
DEVELOPER’S GUIDE
15505-010000-5060 July 2000

Copyright © 2000 Autodesk, Inc.
All Rights Reserved

This publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.

AUTODESK, INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THESE MATERIALS AND MAKES
SUCH MATERIALS AVAILABLE SOLELY ON AN "AS-IS" BASIS.

IN NO EVENT SHALL AUTODESK, INC. BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS. THE SOLE AND EXCLUSIVE
LIABILITY TO AUTODESK, INC., REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THE
MATERIALS DESCRIBED HEREIN.

Autodesk, Inc. reserves the right to revise and improve its products as it sees fit. This publication describes the state of this product at
the time of its publication, and may not reflect the product at all times in the future.

Autodesk Trademarks

The following are registered trademarks of Autodesk, Inc., in the USA and/or other countries: 3D Plan, 3D Props, 3D Studio, 3D Studio
MAX, 3D Studio VIZ, 3DSurfer, ActiveShapes, Actrix, ADE, ADI, Advanced Modeling Extension, AEC Authority (logo), AEC-X, AME,
Animator Pro, Animator Studio, ATC, AUGI, AutoCAD, AutoCAD Data Extension, AutoCAD Development System, AutoCAD LT,
AutoCAD Map, Autodesk, Autodesk Animator, Autodesk (logo), Autodesk MapGuide, Autodesk University, Autodesk View, Autodesk
WalkThrough, Autodesk World, AutoLISP, AutoShade, AutoSketch, AutoSurf, AutoVision, Biped, bringing information down to earth,
CAD Overlay, Character Studio, Design Companion, Drafix, Education by Design, Generic, Generic 3D Drafting, Generic CADD, Generic
Software, Geodyssey, Heidi, HOOPS, Hyperwire, Inside Track, Kinetix, MaterialSpec, Mechanical Desktop, Multimedia Explorer, NAAUG,
ObjectARX, Office Series, Opus, PeopleTracker, Physique, Planix, Powered with Autodesk Technology, Powered with Autodesk
Technology (logo), RadioRay, Rastation, Softdesk, Softdesk (logo), Solution 3000, Tech Talk, Texture Universe, The AEC Authority, The
Auto Architect, TinkerTech, VISION*, WHIP!, WHIP! (logo), Woodbourne, WorkCenter, and World-Creating Toolkit.

The following are trademarks of Autodesk, Inc., in the USA and/or other countries: 3D on the PC, ACAD, Advanced User Interface, AEC
Office, AME Link, Animation Partner, Animation Player, Animation Pro Player, A Studio in Every Computer, ATLAST, Auto-Architect,
AutoCAD Architectural Desktop, AutoCAD Architectural Desktop Learning Assistance, AutoCAD Learning Assistance, AutoCAD LT
Learning Assistance, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk Animator Clips, Autodesk
Animator Theatre, Autodesk Device Interface, Autodesk Inventor, Autodesk PhotoEDIT, Autodesk Software Developer's Kit, Autodesk
View DwgX, AutoFlix, AutoPAD, AutoSnap, AutoTrack, Built with ObjectARX (logo), ClearScale, Combustion, Concept Studio, Content
Explorer, cornerStone Toolkit, Dancing Baby (image), Design 2000 (logo), DesignCenter, Design Doctor, Designer's Toolkit, DesignProf,
DesignServer, Design Your World, Design Your World (logo), Discreet, DWG Linking, DWG Unplugged, DXF, Extending the Design
Team, FLI, FLIC, GDX Driver, Generic 3D, Heads-up Design, Home Series, iDesign, i-drop, Kinetix (logo), Lightscape, ObjectDBX,
onscreen onair online, Ooga-Chaka, Photo Landscape, Photoscape, Plugs and Sockets, PolarSnap, Pro Landscape, QuickCAD, Real-Time
Roto, Render Queue, SchoolBox, Simply Smarter Diagramming, SketchTools, Suddenly Everything Clicks, Supportdesk, The Dancing
Baby, Transform Ideas Into Reality, Visual LISP, Visual Syllabus, VIZable, Volo, Where Design Connects, and Whereware.

Third Party Trademarks

Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the U.S. and other countries

ColdFusion is a registered trademark of Allaire Corporation. All rights reserved.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the United States and other
countries.

Microsoft and ActiveX are registered trademarks of Microsoft Corporation in the United States and/or other countries.

All other brand names, product names or trademarks belong to their respective holders.

Third Party Software Program Credits

Copyright © 2000 Microsoft Corporation. All rights reserved.

Portions of this product are distributed under license from D.C. Micro Development, © Copyright D.C. Micro Development. All rights
reserved.

InstallShield ™ Copyright © 2000 InstallShield Software Corporation. All rights reserved.

Portions Copyright Qualitative Marketing Software Inc., 2000. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

GOVERNMENT USE

Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in FAR 12.212 (Commercial Computer
Software-Restricted Rights) and DFAR 267.7202 (Rights in Technical Data and Computer Software), as applicable.
1 2 3 4 5 6 7 8 9

Contents

Chapter 1 Introduction 5

What Can Custom Autodesk MapGuide Applications Do? 6
View Maps 6
Query and Update Data 6

What Do I Need to Know Before I Begin? 7
Autodesk MapGuide 7
Programming and Scripting Languages 7
Your Audience 8

Chapter 2 Developing with the Viewer API 9

The Autodesk MapGuide Viewer API 10
Creating an Autodesk MapGuide Viewer Application 11

Displaying the Map 11
Accessing the Map Programmatically 15
Working with Autodesk MapGuide Viewer Events 18
Detecting and Installing the Viewer onto Client Systems 21
Handling Display Refresh and the Busy State 23
Handling Errors 26
Accessing Secure Data 26

Chapter 3 Viewer API Examples 29

Performing Common Tasks with the API 30
Counting Layers 30
Listing Layers 31
Adding a Layer 32
Linking Layers 33
Retrieving Keys of Selected Features 35
Retrieving Coordinates of a Selected Feature 37
Invoking Select Radius Mode 39
Toggling a Layer On and Off 40
Zooming In on Selected Features 41
Counting Map Features 42
iii

Customizing the Printout 44
Advanced Applications 49

Custom Redlining Application 49
Municipal Application 53
Facility Management Application 69

Chapter 4 Using Reports to Query and Update Data Sources 77

Autodesk MapGuide Reports 78
How Reports are Generated 78
Specifying the Report Script 78
The Request 79
Launching the Report 79

Introducing ColdFusion and ASP 79
Creating Report Scripts with ColdFusion 80

Example—Listing File Contents with ColdFusion 81
Example—Querying and Displaying Data via the Map 83
Example—Modifying a Database via the Map 94

Creating Report Scripts with ASP 102
Summary of ASP Objects, Components, and Events 103
Example—Listing File Contents with ASP 104
Example—Querying and Displaying Data via the Map 108
Example—Modifying a Database via the Map 119

Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data 129

About the SDF Component Toolkit 130
Toolkit Objects 130
Status Codes 132
Enumerated Constants 133

Working with SDF Files 133
Indexing 133
Editing 134
SDF Pitfalls 134

Performing Common Tasks with the Toolkit 135
Updating SDF Files via the Map 136
Visual Basic Examples 146

Converting To an SDF File 146
Getting Information about an SDF File 153
Copying an SDF File 161

Index 167
iv | Contents

In This Chapter

� What can custom
Autodesk MapGu
applications do?

� What do I need t
know before I beg
1

Introduction

ide

o
in?
The Autodesk MapGuide® product suite provides

you with all the tools you need to create, publish,

and display maps and associated attribute data over

the web. The Autodesk MapGuide Developer’s Guide is

a complete guide to Autodesk MapGuide’s custom-

ization and development features. This chapter

defines Autodesk MapGuide application develop-

ment, describes how to use this manual, and lists

additional sources of information.
5

What Can Custom Autodesk MapGuide
Applications Do?

An Autodesk MapGuide application can be as simple as an HTML page that
displays an embedded map window file (MWF), or it can be as complex as a
CGI application, coded in C++, that modifies data files on the server and
refreshes the browsers of everyone viewing the map. Usually it is something
between the two, such as a map embedded in a web page with buttons and
other controls on it that interact with the map.

Following is more detail about the types of tasks your Autodesk MapGuide
application can do.

View Maps

The most common development goal is to allow Autodesk MapGuide Viewer
users to view and interact with maps. You can do this by embedding a map
in an HTML page, in which case the Viewer runs within the user’s web
browser to display the map, or you can run the Viewer from within a stand-
alone application that you create. With either approach, you will use the
Viewer API to interact with the map. For example, you might create a button
that refreshes a map or add text boxes that allow the user to add data to the
map.

Query and Update Data

Beyond viewing maps, users want to retrieve data to answer questions. This
includes selecting map features and running reports on them, such as
selecting power poles and seeing when they were last serviced. You set up
these reports using Allaire ColdFusion®, Microsoft Active Server Pages�
(ASP), or another server-side scripting language. Additionally, you can use
these scripts to enable the user to update the data. For example, you could
display the date of last service in a text field, where the technician in the field
could update it. Your script would then take the technician’s date and update
the source database, so that all other technicians viewing that power pole on
the map would see the new date. This is discussed in Chapter 4, “Using
Reports to Query and Update Data Sources.”

You can also enable users to mark up the maps to edit the spatial data, such
as correcting the location of a fire hydrant by drawing its correct location on
the map. This process is called redlining. Autodesk MapGuide Release 5
provides APIs that allow you to add redlining functionality to your map. You
6 | Chapter 1 Introduction

can then create a server-side script that retrieves the redlining data, processes
it, and updates the source data. This process is described in Chapter 2,
“Developing with the Viewer API.” If your source data is in SDF files, you can
use the Autodesk MapGuide SDF Component Toolkit to update the SDFs
directly when redlining. This process is described in Chapter 5, “Using the
SDF Component Toolkit to Modify Spatial Data.”

What Do I Need to Know Before I Begin?

Before you can begin developing with Autodesk MapGuide, there are several
requirements you must meet.

Autodesk MapGuide

You need to be very familiar with Autodesk MapGuide. In particular, you
should read the first few chapters of the Autodesk MapGuide User’s Guide to
make sure you understand the product, especially emphasizing the following
sections:

� Chapter 2, “Understanding Autodesk MapGuide.” Read this chapter care-
fully, with particular attention to the sections on how the components
work together, application development components, and what applica-
tion development is.

� Chapter 3, “Designing Your System.” Pay particular attention to the sec-
tions on security, architecture and performance, and choosing a
viewer/browser environment.

The more you understand about the Autodesk MapGuide components and
how they work together, the easier it will be for you to comprehend the
examples in this book and come up with unique solutions on your own.

Programming and Scripting Languages

To build custom Autodesk MapGuide Viewer applications, server-side scripts,
and reports, you will need to be able to perform the following tasks:

� Create HTML pages with embedded Java�, JavaScript, JScript, or VBScript
code that accesses the objects of the Autodesk MapGuide Viewer API. For
example, you might create an HTML form containing a button that turns
a layer on and off, or a drop-down list that selects map features.

� Create custom reports with ColdFusion, Active Server Pages�(ASP), or
another third-party application.
What Do I Need to Know Before I Begin? | 7

� Create server-side applications with Autodesk MapGuide SDF Component
Toolkit (to dynamically update SDF files posted on an Autodesk
MapGuide Server) or with another tool (to process redlining data and
update your data sources).

Your Audience

As with all development, the most important aspect of designing your appli-
cation is asking yourself, “What do my users need?” Talk to the people who
will be using your application and find out how they will be using it. What
tasks will they want to perform? Will they need redlining? Are they computer
savvy, or will you need to guide them through basic usage of your applica-
tion? Do they have much domain knowledge (for example, are they all elec-
tricians, or will some of them be administrative assistants)? It’s critical that
you find out what tasks your users will need to perform, as well as their
knowledge of those tasks.

If you want to provide information about your application that users can
readily access, you can develop your own set of help pages. You can then set
up the map to point to your help instead of the default Autodesk MapGuide
Viewer help when users click the Help button or access help from the popup
menu. For more information, refer to the Autodesk MapGuide Help.
8 | Chapter 1 Introduction

In This Chapter

� The Autodesk
MapGuide Viewe

� Creating an Auto
MapGuide Viewe
application
2

Developing with the
Viewer API
9

r API

desk
r
The Autodesk MapGuide Viewer API allows you to

customize the way in which a Viewer user interacts

with your map. For example, you can add buttons

and other controls that interact with the Autodesk

MapGuide Viewer and the map. You can also create

a stand-alone version of the Autodesk MapGuide

Viewer that displays maps without the use of a web

browser. This chapter introduces the API and

describes the main tasks involved with creating a

client-side application.

For mo
Take a lo
ple custo
applicat
www.aut
mapguid
better id
of applic
create.
The Autodesk MapGuide Viewer API

The Autodesk MapGuide Viewer comes in three different versions: a
Microsoft ActiveX Control, a Netscape Plug-In, and a Java edition.

Each Viewer exposes an API that contains all of the Viewer functionality. An
API (application programming interface) is a set of classes, methods, and
events within an application that other applications can access. In this case,
the Autodesk MapGuide Viewer API enables you to create your own web
applications that interact with the Autodesk MapGuide Viewer.

For example, you could create an application that displays a map in one
frame and a form in another. In the form, you might have controls such as
buttons and list boxes that use API methods to alter or redraw the map. Or
you might put the map and controls on a single page, as shown in the
following illustration. This application consists of a map, a form listing map
features, and a number of custom image buttons, all lined up in an HTML
table. Users can select a city from the list box, and then click a button to
zoom to that city.

Sample application with custom buttons

re info...
ok at the sam-
m Viewer

ions at
odesk.com/
edemo to get a
ea of the types
ations you can
10 | Chapter 2 Developing with the Viewer API

You could also code your application to update the form, display status infor-
mation, or change the appearance of buttons as users select or double-click
specific features on the map. This two-way interaction between the map and
controls on the web (HTML) page allows you to create very powerful
applications.

Keep in mind that an application in this context is a web page containing
one or more maps, each of which is displayed in a separate instance of the
Autodesk MapGuide Viewer, and any additional items on the web page, such
as frames, controls, graphics, and so on. Therefore, all of your application
code is contained in the web page itself—you use one of the supported
languages (see “Choosing a Viewer/Browser Environment” in the Autodesk
MapGuide User’s Guide) to write the code for your application inside of the
HTML code in your web page. The rest of this chapter describes this process
in detail. For complete information about using the Autodesk MapGuide
Viewer API, refer to Autodesk MapGuide Viewer API Help, available from the
Autodesk MapGuide CDs and the Autodesk MapGuide documentation page
(www.autodesk.com/mapguidedocs). The Viewer API Help provides descriptions
of all of the Viewer API objects, methods, properties, and events, and it
includes sample applications that you can use to get a quick start.

Creating an Autodesk MapGuide Viewer
Application

This section describes the essential tasks you need to perform when creating
a Viewer application, as well as some key concepts you need to keep in mind.

Displaying the Map

As described in the previous section, you create all of your application code
in the same web page where your map is displayed. Therefore, the first step
is to learn how to add the map to the web page. If you are creating a simple
application, such as a web page with nothing but a map and text, this step
might be all you need to know.

An important concept to keep in mind is that when you add a map to a web
page, you are not inserting an empty Autodesk MapGuide Viewer in which
you can open maps. Rather, you are adding a specific map to the web page,
and the user’s copy of the Autodesk MapGuide Viewer runs automatically to
display it. This is an important distinction, because it means that your users
can view the same map with one of the four Autodesk MapGuide Viewers,
depending on which ones you support. The Viewers you support depend on
Creating an Autodesk MapGuide Viewer Application | 11

which scripting language you are using and which browsers your users have
(see “Choosing a Viewer/Browser Environment” in the Autodesk MapGuide
User’s Guide), as well as how you add the map to the web page. The following
techniques explain how to add the map to support the different Viewers.

For the ActiveX Control and the Plug-In

To display your map with the ActiveX Control and/or the Plug-In, you can
either create a link to the map or embed the map as follows:

Linking to a Map

When you link a map, you create a link to the map from an HTML page, so
that when the user clicks that link, the map displays full screen. Note that
the browser displays the map by itself, not as part of an HTML page.

Linking to a map

You create the link just like any other link in HTML, using the <A> tag with
the HREF parameter. Set the HREF value to the URL of your Autodesk
MapGuide Server, along with the maps directory alias and the MWF (map)
file. For example:

United States Map
12 | Chapter 2 Developing with the Viewer API

Embedding a Map

When you embed the map in an HTML page, the map displays with the rest
of the information on that page when the user visits the page.

Embedding a map

To embed the map, use the EMBED (for Netscape Navigator) or OBJECT (for
Microsoft Internet Explorer) tag in the page. For more information and
examples, refer to “Embedding Your Map” in the Autodesk MapGuide Viewer
API Help.

To ensure that both Netscape Navigator and Internet Explorer can access the
map, you use both tags. For example:

<OBJECT ID="myMap" WIDTH=300 HEIGHT=200
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://www.mapguide.com/maps/usa.mwf">
<EMBED SRC="http://www.mapguide.com/maps/usa.mwf" NAME="myMap"

WIDTH=300 HEIGHT=200>
</OBJECT>

Refer to “Autodesk MapGuide Viewer URL Parameters” in Autodesk MapGuide
Viewer API Help for a list of the parameters that control the way the map is
displayed when it is linked to or embedded in an HTML page. Be sure that
the values you use are the same for both the OBJECT and EMBED parameters.
Creating an Autodesk MapGuide Viewer Application | 13

For the Java Edition

To display a map in the Java edition, you need to use the <APPLET> tag in your
HTML page. You cannot create a link to a map using the Java edition; the
map must be embedded in the page.

To display your map with the Java edition

1 Start with the standard HTML <APPLET> tag.

2 Set the CODE parameter to MGMapApplet.

3 Set the VALUE parameter to the URL of your Autodesk MapGuide Server
along with the maps directory alias and MWF file. For example:

<HTML>
<HEAD>
<TITLE>Autodesk MapGuide Java Edition Example</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Simple Invocation of Installed Autodesk MapGuide Applet</H2>
<APPLET WIDTH=300 HEIGHT=200 ALIGN="baseline"

CODE="com/autodesk/mgjava/MGMapApplet.class">
<PARAM NAME="myMap" VALUE=

"http://www.mapguide.com/maps/usa.mwf">
</APPLET>
</CENTER>
</BODY>
</HTML>

For the LiteView Extension

Now in Release 5 of Autodesk MapGuide, users can view maps as static raster
images using the new Autodesk MapGuide LiteView Extension. This is useful
when users need only to display the map and do not need the more advanced
queries and other functionality of the other three Viewers. Best of all, users
do not have to download a Viewer to view your maps; the LiteView Extension
displays the map to any visitor to your web page.

To display a map using the LiteView Extension, you send a URL request that
returns the map displayed as a raster image file in the browser. Note that you
do not use the Viewer API with the LiteView Extension. For complete infor-
mation on implementing the LiteView Extension, refer to the Autodesk
MapGuide LiteView Extension Developer’s Guide.
14 | Chapter 2 Developing with the Viewer API

For mo
Read “G
Started”
Autodesk
Viewer A
Accessing the Map Programmatically

Once your map is embedded in a web page, you can start to write your
custom application. The first step in that process is learning how to access the
map from your code. You do this by creating an instance of the MGMap
object; the code you write uses that instance when it calls methods in the
Viewer API.

Although Netscape and Internet Explorer expose the map object at different
levels in their object hierarchies, you can write a simple function that checks
the user’s browser type and returns an instance of the map object using the
method required by that browser. Once you’ve obtained the map object, the
code for either browser will in most cases be identical.

Note Because Internet Explorer automatically recompiles JavaScript code into its
native JScript, you can write JavaScript code that works with either browser.

Suppose you embedded your map and named it “myMap”. In Netscape Navi-
gator, the map object called “myMap” is exposed by the document object
and can be accessed from JavaScript in one of the following ways:

document.myMap // one way...
document.embeds["myMap"] // another way...

In Microsoft Internet Explorer, the map object called “myMap” is exposed by
the window object and can be accessed from JavaScript in one of the
following ways:

window.myMap // one way...
myMap // another way...

The easiest way get around these differences is to write a function that checks
the browser type and returns the appropriate map object; that function can
then be called as needed by the rest of the code in your application.

If your embedded map has the name “myMap”, the code to access the map
on a simple, frameless HTML page would look like this:

<SCRIPT LANGUAGE="JavaScript">
function getThisMap()
{

if (navigator.appName() == "Netscape")
return document.myMap;

else
return window.myMap;

}
</SCRIPT>

re info...
etting
 in the
 MapGuide
PI Help.
Creating an Autodesk MapGuide Viewer Application | 15

If your application has multiple HTML frames, the code to access the same
map in a frame called “Left” would look like this:

<SCRIPT LANGUAGE="JavaScript">
function getThisMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.myMap;

else
return parent.Left.myMap;

}
</SCRIPT>

Note We chose the name “getThisMap()” for our function, but the name can
be anything you want, as long as it follows JavaScript naming conventions. As you
look at the source of other Autodesk MapGuide applications, you might notice
that the name “getMap()” is often used; this name should not be confused with
MGMapLayer.getMap(), a predefined Viewer API method.

After this function is defined, any other JavaScript method can simply call
getThisMap() to retrieve the map object. For example, you could create a vari-
able to represent the map, and then use getThisMap() to set the value of that
variable:

var map = getThisMap();

You could then apply methods to that variable to work with the map. For
example, the following function displays an Autodesk MapGuide report
called “Parcel Data”:

function runReport()
{

var jb_map = getThisMap(); // assign map to variable
jb_map.viewReport('Parcel Data'); // call method from variable

}

Or you could bypass the variable assignment and use getThisMap() directly:

function runReport()
{

getThisMap().viewReport('Parcels'); // use getThisMap() return value
}

Because getThisMap() has an MGMap object as its return value, you can use
the function in place of MGMap, accessing that object’s methods or proper-
ties as needed.
16 | Chapter 2 Developing with the Viewer API

For mo
Read “Im
the Java
the Auto
MapGuid
Help.
About the Java Edition

The process described above works for the Plug-In, the ActiveX Control, and
the Java edition—the object hierarchy is determined by the browser, not by
the version of the Autodesk MapGuide Viewer. Note, however, that JavaS-
cript and JScript do not behave uniformly across all browser/operating
system combinations. In particular, Internet Explorer has the following limi-
tations:

� Internet Explorer 4.0 for Mac OS does not support JavaScript. It supports
JScript, but JScript cannot control a Java applet.

� Because Internet Explorer exposes applets as COM objects instead of Java
objects, API methods that pass observer objects will not work. For exam-
ple, digitizePoint requires an instance of the MGDigitizePointObserver
object. Therefore, Internet Explorer wouldn’t be able to access digitizePoint
or any other methods that pass observer objects as arguments, including
the following MGMap methods: addMapLayer and addMapLayers, all of
the digitize methods, and viewDistance and viewDistanceEx. If you need to
use any of these methods, you will need to implement the Java edition of
the Autodesk MapGuide Viewer from Java instead of JScript.

The following table clarifies the various levels of support that
JavaScript/JScript provide across different configurations.

JavaScript/JScript support with each operating system/Viewer/browser combination

Operating System Version of the API Level of Support

Windows Plug-In on Netscape Full support

Windows ActiveX Control on Internet
Explorer

Full support

Windows Java edition on Internet
Explorer

Only methods that do
not pass observer objects
as arguments

Windows Java edition on Netscape Full support

Solaris Java edition on Netscape Full support

Mac OS Java edition on Internet
Explorer

Cannot control Java
applet

re info...
plementing

 Edition” In
desk
e Viewer API
Creating an Autodesk MapGuide Viewer Application | 17

Therefore, if you need to support the largest number of browsers and oper-
ating systems, you should simply embed the Java edition in the page and not
use JavaScript or JScript to extend the functionality of the page to interact
with the map, or you will need to write your application in Java. This is
particularly important if you need to support Macintosh users, as they will
need to use the Java edition with Internet Explorer, which doesn’t have full
JScript support.

For more information about the Java edition, refer to “Working with Java” in
the Autodesk MapGuide Viewer API Help.

Now that you have displayed the map and created an instance of it, you are
ready to begin coding. However, there are some key concepts you need to
keep in mind. The rest of this section describes these concepts.

Working with Autodesk MapGuide Viewer
Events

Just as the web browser has events that are triggered in response to actions
within the browser, Autodesk MapGuide has its own events that are triggered
by actions within the Viewer. For example, if the user selects a feature on the
map, the onSelectionChanged event is triggered. There are also events for
when the mouse double-clicks, the map view changes, and more.

Event Handlers and Observers

Events are useful because you can write code that is executed only when
certain events occur. For example, if the user clicks a point on the map, you
might want to call a function that updates text boxes with the coordinates
for that point (see “Updating SDF Files via the Map” on page 136 for an
example of this). This type of function, which works only in response to an
event, is called an event handler.

Before you can capture events and call the event handler, however, you need
to ensure that you have event observers set up. Event observers act as the link
between the event and your event handler; they are triggered when an event
occurs and then call the event handler in response.
18 | Chapter 2 Developing with the Viewer API

Event Observers in Internet Explorer vs. Netscape
Navigator

This all sounds fairly straightforward: an event occurs, it’s picked up by an
observer, which then calls the event handler function that does something
in response to the event. The complication is that Netscape Navigator and
Internet Explorer use event observers differently, so if you want to support
both browsers, you need to write code for both. For Netscape, Autodesk
MapGuide provides an observer applet that you embed in your application
using the APPLET tag. For Internet Explorer, you create your own observer by
writing a few lines of VBScript code that tell Internet Explorer the name of
the event handler. This is demonstrated in the example on page 20.

Naming Conventions

There is one more place where things get complicated: when you call an
Autodesk MapGuide method that triggers an event (such as digitizePoint),
you pass the Autodesk MapGuide observer as a parameter if the browser is
Navigator, but you do not pass the VBScript observer method if the browser
is Internet Explorer. This is because Internet Explorer counts on a standard
naming convention for event observers: when an event occurs, Internet
Explorer looks for a VBScript method with the name of the object in which
the event occurred (in this case, the map) followed by the event (such as
mapname_onDigitizedPoint in response to an onDigitizedPoint event). If it
finds such a method, it treats it as the event observer, reads it to find out what
function to call next (the event handler), and then calls that event handler.
Thus, Internet Explorer knows how to find the observer without being passed
its name. Netscape does not have this same logic—you have to pass the
name of the observer to get it going.

At this point, you might be wondering how the Autodesk MapGuide observer
can possibly know where to send the event, that is, how does it know the
name of your event-handler function? This is where the standard naming
convention comes in again. The Autodesk MapGuide observer assumes that
your event handler function is going to use exactly the same name as the
event. Therefore, to make the observer work properly, always name your
event handler function the same name as the event itself. Also note that both
the observer applet and the VBScript observer you wrote can point to the
same event handler function—at this stage, you do not need to do anything
extra to make it work for both browsers.
Creating an Autodesk MapGuide Viewer Application | 19

An Example

Let’s say you want to support both Internet Explorer and Netscape. In your
HTML page, you create the VBScript function that will act as the observer for
the onDigitizedPoint event:

<SCRIPT LANGUAGE="VBScript">
//send onDigitizedPoint events from the ActiveX Control to the
//event-handling function
Sub map_onDigitizedPoint(Map, Point)

onDigitizedPoint Map, Point
End Sub
</SCRIPT>

You also embed the observer applet for Netscape, MapGuideObserver5.class:

// ...if Netscape, embed event observer
if (navigator.appName == "Navigator")
{
 document.write("<APPLET CODE=\"MapGuideObserver5.class\"

WIDTH=2 HEIGHT=2 NAME=\"obs\" MAYSCRIPT>");
 document.write("</APPLET>");
}

Notice that we’ve given the observer the name “obs”. When you call this
observer, you will refer to it as “document.obs”, because in the Netscape
object model, it is an object of the document. Be sure to copy the
MapGuideObserver5.class file to the same directory as your HTML files, or this
code won’t work.

Now, let’s say you have a button named “Digitize”. This button is set up so
that its onClick event (a browser event) calls a function you created called
DigitizeIt(). The DigitizeIt() function calls the digitizePoint() method, a Viewer
API method that waits for the user to click a point on the map and then
captures that point. Because the digitizePoint() method requires an observer
as a parameter if you’re supporting Netscape, you write code for both:

function digitizeIt()
{

if (navigator.appName == "Navigator")
getMap().digitizePoint(document.obs);

else
getMap().digitizePoint();

}

So if the user is viewing the map in Netscape, the observer applet (“docu-
ment.obs”) is passed as a parameter. If the user is viewing the map in Internet
Explorer, no observer is passed, because Internet Explorer will know that you
have an event observer method waiting to observe this event. The browser
waits for the user to click a point on the map, which triggers the onDigitized-
Point event. Then, one of the two observers picks up the event and tells the
20 | Chapter 2 Developing with the Viewer API

For mo
Read the
Started”
Autodesk
Viewer A
browser what function to call next, namely an event handler function you
named onDigitizedPoint. The onDigitizedPoint function then does whatever
you want with the event, such as retrieving the coordinates of the point the
user clicked.

Additional Information

There are two more tips that you need to know about events.

First, if you embedded MapGuideObserver5.class in a different frame or
window from the function where you called it, you will need to specify the
full window.frame.document.object name, such as
“parent.mapframe.document.obs”.

Second, there are some methods whose sole function is to allow you to set
the observer for a specific event. For example, when the map view changes
(such as in response to a user panning or zooming), how do you set the
observer for the onViewChanged event? You create a function called onLoad
(a browser event) and insert the setViewChangedObserver method to set the
observer for the onViewChanged event. You can do this for each of the events
you want to handle. Note that specifying an observer is not required for all
events—just for the events you want to handle. Also note that although you
will need to create a separate Internet Explorer observer for each type of
event you want to handle, you can use the same instance of
MapGuideObserver5.class for all events in Netscape Navigator.

To see a sample of how to handle events, refer to Examples in the Autodesk
MapGuide Viewer API Help. Also in the Help, refer to “Setting up the Event
Handler” in the Overview and “Events” in the Object Reference.

Detecting and Installing the Viewer onto Client
Systems

If users accessing your web site don’t have an Autodesk MapGuide Viewer
installed on their system, they need to download one in order to view the
map you have displayed in the web page (unless you are using the LiteView
Extension; see page 14). You can include code in your HTML file that auto-
matically detects whether or not the user has the Viewer, and then either
downloads it automatically or prompts the user to download it themselves.

First, add the map to the HTML page. Include the CODEBASE parameter to
automatically detect whether the latest version of the ActiveX Control is
installed (the CODEBASE parameter is ignored if the user is using Netscape
Navigator). If the user has an older version, the latest version will be
installed.

re info...
 “Getting
 page In the
 MapGuide
PI Help.
Creating an Autodesk MapGuide Viewer Application | 21

<OBJECT ID="myMap" WIDTH=300 HEIGHT=200
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D"
CODEBASE="ftp://ftp.autodesk.com/pub/mapguide/ver5/

viewer/en/mgaxctrl.cab#Version=5,0,0,0">
<PARAM NAME="URL" VALUE="http://www.mapguide.com/maps/usa.mwf">
<EMBED SRC="http://www.mapguide.com/maps/usa.mwf"

NAME="myMap" WIDTH=300 HEIGHT=200
PLUGINSPAGE="<http://www.autodesk.com/products/mapguide/

vdwnload.htm>">
</OBJECT>

The ActiveX Control download is handled automatically for Internet
Explorer users, but if a Netscape user doesn’t have the Plug-In or doesn’t have
the latest version, you need to write additional code to prompt the user to
download the Plug-In.

// Call this function on a page onLoad event or frameset onLoad event
function init()
{

// For Netscape browsers, check for plug-in
if (navigator.appName == "Netscape")
{

for(j=0;j<navigator.plugins.length;j++)
{

if (navigator.plugins[j].name == "Autodesk MapGuide")
return;

}
// If the plug-in is not detected, display the message...
displayDownloadMsg();
return;

 }
// If the Plug-In is installed, check the version by returning
// the API version
var version = getThisMap().getApiVersion();

 //If the API/Plug-In version is previous to 5.0,
//display the message
if (version < "5.0")
{

 displayDownloadMsg();
return;

}
}
function displayDownloadMsg()
{

// Display dialog box.
msg = "You do not have the latest version of " +

"Autodesk MapGuide Viewer. Do you want to " +
"download it now? Click OK to download or Cancel" +
"to proceed with your current Viewer."

// If user clicks OK, load download page from Autodesk web site
if (confirm(msg))

top.window.location =
"http://www.autodesk.com/products/mapguide/vdwnload.htm";

}

22 | Chapter 2 Developing with the Viewer API

Handling Display Refresh and the Busy State

When the Autodesk MapGuide Viewer refreshes the display, it can cause
errors in your application unless you take the correct steps to prevent them.
You need to familiarize yourself with the way that the API is designed in
order to understand how to code your application correctly.

Autodesk MapGuide Viewer enters a busy state whenever it refreshes the
display. In this situation, the Viewer enters the busy state, which does not
end until the data has been received from the server and the display is
updated.

There are two important points to remember about the busy state:

� When your Autodesk MapGuide Viewer application calls an API method
that causes a busy state, the Viewer can return control to the application
and then go on to the next method while the Viewer is still in the busy
state.

� Some methods in the Viewer API do not function correctly if the applica-
tion calls them while the Autodesk MapGuide Viewer is in a busy state.
Instead, the Viewer sets the error code in MGError to -1 for busy. The
descriptions of the methods in the Autodesk MapGuide Viewer API Help
clearly state which methods do not work during the busy state.

To avoid errors, you need to make sure that the Autodesk MapGuide Viewer
is not in a busy state when your application calls one of these methods.

Your application is most likely to fail when it is about to call two or more API
methods, the first one being an API method that automatically invokes a
refresh, and the following one(s) being methods that don’t work during the
busy state. For example:

function selectAndZoomToPointObject(mgObj)
{
var mgMap = getThisMap();
var mgSel = mgMap.getSelection();
mgSel.clear();
mgSel.addObject(mgObj);
mgMap.zoomSelected(); // Busy state begins in zoomSelected()
mgMap.setWidth(5, "KM"); // Error occurs because setWidth() fails if

// called during the busy state
}

To avoid errors, you need to make sure that Autodesk MapGuide Viewer is
not in a busy state when your application calls one of these methods. To do
this, you can control display refresh using the autoRefresh flag, you can detect
when a refresh is about to happen, and you can detect a change in the busy
state. Each of these approaches is described in the following sections.
Creating an Autodesk MapGuide Viewer Application | 23

Controlling Display Refresh

You can ensure that the Viewer will not enter a busy state by controlling
when display refreshes occur. The first step is to remember that display
refreshes always occur in the following instances:

� The application calls an API method that requires an automatic refresh,
and the API has the autoRefresh flag set to true. In the Viewer API Help, the
methods requiring an automatic refresh are noted as such.

� Your application calls zoomGotoDlg, zoomGotoLocation, setUrl, refresh, or
setAutoRefresh. These methods always invoke a display refresh, even if the
autoRefresh flag is set to false.

To develop an application that executes smoothly, you need to prevent busy
states from happening while the application calls methods in the API that
don’t work during the busy state. To do this, you need to disable the
autoRefresh flag. Specifically, you need to set the autoRefresh flag to false
immediately before calling the first method, then reset the autoRefresh flag
to true and call the refresh method immediately after your application calls
the other methods that don’t work during the busy state. For example, take
a look at this modified code:

function selectAndZoomToPointObject(mgObj)
{

var mgMap = getThisMap();
var mgSel = mgMap.getSelection();
mgMap.setAutoRefresh(false); // Prevent busy state from happening

// when zoomSelected is called
mgSel.clear();
mgSel.addObject(mgObj);
mgMap.zoomSelected();
mgMap.setWidth(5, "KM");
mgMap.setAutoRefresh(true); // Reset the autoRefresh flag
mgMap.refresh(); // Update the display

}

Note that simply setting the autoRefresh flag back to true does not refresh the
map; you must also call the refresh method after resetting the flag.

AutoRefresh Flag Caveats

There are caveats you need to know when setting the autoRefresh flag to false.
While autoRefresh is disabled, methods that would normally cause refreshes
to occur do not, and the following types of operations may not work as
expected:

� Enumerating map features on dynamic layers after a pan or a zoom. If your
application tries to return the number of features on a dynamic layer prior
24 | Chapter 2 Developing with the Viewer API

to a refresh, it will return the number that existed before the pan or zoom
occurred.

� Querying on or modifying selected features. If your application performs que-
ries or modifications on features on dynamic layers prior to a refresh, the
features may not actually exist anymore, or additional features that were
added to the selection may be missing.

� Operations that require user interaction. Methods such as digitizePoint and
digitizeRectangle require users to click or drag the mouse for their input
parameters. However, users will be positioning the cursor over a version of
the map that is different from the one on which the methods will be per-
forming calculations.

� Printing maps on dynamic layers and buffering features on dynamic layers. Fea-
tures that have not been downloaded onto the displayed map will not
appear in the printout or the buffer.

Additionally, the following methods do not work when the autoRefresh flag
is disabled: zoomGotoDlg, zoomGotoLocation, setUrl, refresh, and
setAutoRefresh. If you call one of these methods when the autoRefresh flag is
disabled, they will fail and will set the Refresh Disabled error code (-14).
Therefore, you need to avoid calling these methods when you have disabled
the autoRefresh flag, and also avoid calling them from event-handling code
for onViewChanging and onMapLoaded, as these events always disable the
autoRefresh flag while running the event-handling code.

Detecting Display Refreshes

The Autodesk MapGuide Viewer fires the onViewChanging and
onViewChanged events both when a display refresh is about to happen and
when one just happened. You can write event-handling code in your appli-
cation to respond to these events (see “Working with Autodesk MapGuide
Viewer Events” on page 18). However, before the Viewer fires these events, it
disables the autoRefresh flag. When writing your event-handling code for
onViewChanging, be sure to avoid methods that don’t work when the
autoRefresh flag is disabled, as described in the previous section.

Detecting a Change in the Busy State

The Autodesk MapGuide Viewer fires the onBusyStateChanged event when
the busy state changes. You can write event-handling code for this event to
enable and disable specific user interface elements, such as buttons, in your
application.
Creating an Autodesk MapGuide Viewer Application | 25

Handling Errors

Every application should track and handle errors in the code. The Viewer API
has error tracking classes and methods that you can use while debugging
your applications.

Every time an API method is run or a property is accessed, Autodesk
MapGuide updates the MGError object. This object contains error informa-
tion for the most recently executed method or property. You can check the
error status of the most recently called method by calling the getLastError()
method in MGMap. The getLastError() method returns a reference to the
MGError object.

Argument Checking

If you call an API method with incorrect argument types, by default,
Autodesk MapGuide Viewer has the method do nothing and flags the error
in MGError. You can see which argument was incorrect by calling the getArg()
method of MGError. To see the correct argument types for a method, refer to
the Autodesk MapGuide Viewer API Help.

Debugging an Application

In addition to checking MGError, you can call the enableApiExceptions() and
disableApiExceptions() methods in MGMap to throw or not throw exceptions.
When exceptions are enabled and the MGError code is set to a non-zero value,
Autodesk MapGuide throws an exception. Depending on your development
environment, the exception will halt your code and send an error message
containing the line number of the error to the screen.

Accessing Secure Data

Map authors can control whether developers can use the getVertices() and
getLayerSetup() methods to access coordinate values and/or map layer setup
data. Map authors control the security of this data from the Map Layer Prop-
erties dialog box in Autodesk MapGuide Author. If map authors allow access
to the API, they can also stipulate that the application must send in a specific
passkey first. If you are building an application for a map that requires a
passkey to access the coordinate values and/or the layer setup data, you will
need to get the passkey from the map author and pass it in with the unLock()
method to enable the getVertices() and getLayerSetup() methods. Remember
that users can view any embedded scripts in HTML, so in some cases you may
26 | Chapter 2 Developing with the Viewer API

not want to hard code your passkey in your web page. To keep the passkey
secure, we recommend that you implement one of the following techniques:

� Create an application that includes one frame that displays the map only.
Be sure that the map fills up the entire frame. In this case, users will not
be able to view the source code of the frame that displays the map. You
can then hard code the passkey in the source code of that frame.

� Write a Java applet that makes a request for the passkey to your Autodesk
MapGuide Server and then returns the passkey to the script in the web
page. Call this applet in your embedded script after making sure that the
user has met your security criteria.

� Write your entire Autodesk MapGuide Viewer application in a Java applet.

This chapter has covered the basic, essential tasks and concepts you need to
understand to create your application. The next chapter discusses some of
the common tasks you will perform with the Viewer API.
Creating an Autodesk MapGuide Viewer Application | 27

28

In This Chapter

� Performing comm
tasks with the AP

� Advanced
applications
3

Viewer API Examples
29

on
I

This chapter shows you how to write code for com-

mon tasks you will perform with the Viewer API. It

also shows two advanced applications from begin-

ning to end.

Performing Common Tasks with the API

This section contains some simple JavaScript code samples that show you
how to perform basic Autodesk MapGuide Viewer tasks in your custom appli-
cation. Note that this section refers to JavaScript code modules as functions,
reserving the term method for members of the object-oriented Viewer API.
Also note that although spatial data on the map is called map features,
methods and properties in the Viewer API that work with map features use
the term “object” instead of “feature”. This difference in terminology exists
because map features were called map objects in previous releases of
Autodesk MapGuide. Be careful not confuse the term “object” in these API
names with the object-oriented programming concept of objects. For
example, the addObject method adds a map feature to the selection. Likewise,
the MGMapObject object represents map features.

Tip The Autodesk MapGuide Viewer API Help contains the source code for these
examples in the Examples section. For detailed information about each of the
objects, methods, properties, and events, you can look them up in the index of
the help.

Counting Layers

The countLayers() function counts the layers in a map and displays the count
in a dialog box:

function countLayers()
{

var map = getThisMap();
var layers = map.getMapLayersEx();
var cnt = layers.size();
alert("This map has " + cnt + " layer(s).");

}

The function starts by calling getThisMap() and assigning its return value to
a variable called “map”:

var map = getThisMap();

Remember that getThisMap() is a custom function that detects the user’s
browser type and returns an MGMap object using the syntax required by that
browser (see page 15).

Next, countLayers() calls getMapLayersEx(), a Viewer API method that returns
an MGCollection object containing all the layers defined in the map. The
layer collection is assigned to a variable called “layers”:

var layers = map.getMapLayersEx();
30 | Chapter 3 Viewer API Examples

Then it calls the MGCollection size() method, which returns a count of the
layers in the collection; that number is assigned to a variable called “cnt”:

var cnt = layers.size();

Finally, countLayers() displays the count, using the JavaScript alert() function:

alert("This map has " + cnt + "layer(s).");

Displaying the layer count

Listing Layers

The listLayers() function counts the layers in a map and displays their names:

function listLayers()
{

var map = getThisMap();
var layers = map.getMapLayersEx();
var cnt = layers.size();
var msg;
var i;
for (i = 0; i < cnt; i++)
{

var layer = layers.item(i);
msg = msg + layer.getName() + "\n";

}
alert(msg);

}

The function starts by getting an instance of the map, a layer collection, and
a layer count, using the same code as the previous example:

var map = getThisMap(); // get an MGMap object
var layers = map.getMapLayersEx(); // create layer collection
var cnt = layers.size(); // get layer count

Next, listLayers() uses a for loop to cycle through the layer collection, placing
all the layer names in a single variable called “msg”.

var msg; // empty variable to hold layer names
var i; // counter variable; used by loop
for (i = 0; i < cnt; i++) // iterate from 0 to cnt, our layer count
{

var layer = layers.item(i); // get next layer
msg += layer.getName() + "\n"; // add layer name to msg

}
Performing Common Tasks with the API | 31

The cnt variable tells the for loop to iterate one time for each map layer. At
each iteration, the loop counter variable (i) is incremented and the following
statements are processed.

var layer = layers.item(i); // get next layer
msg += layer.getName() + "\n"; // add layer name to msg

The first statement uses the item() API method to select a layer from the
collection and assign it to a variable called “layer”.

The second statement operates on the layer variable, first using the API
method getName() to obtain the name of the layer represented by that vari-
able, and then assigning that name to the msg variable. In addition to the
layer name, msg is also assigned its previous contents and the JavaScript
newline character, \n. This has the effect of adding each layer name to msg
as a separate text line.

Finally, listLayers() uses the JavaScript alert() function to display the contents
of msg in a dialog box:

alert(msg);

Displaying layer names

Adding a Layer

The doAddLayer() function adds a single named layer to a map:

function doAddLayer()
{

if (navigator.appName == "Netscape")
document.myMap.addMapLayer("hydro.mlf", document.obs);

else
window.myMap.addMapLayer("hydro.mlf");

}

The function starts by checking the browser type. If the browser is Netscape,
doAddLayer() calls the addMapLayer() API method, supplying it with the
32 | Chapter 3 Viewer API Examples

name of an existing map layer file (MLF) and the name of the Java observa-
tion applet:

document.myMap.addMapLayer("hydro.mlf", document.obs);

If the browser is Internet Explorer (or, more specifically, not Netscape),
doAddLayer() calls the addMapLayer() API method, supplying only the layer
name as an argument:

window.myMap.addMapLayer("hydro.mlf");

Because addMapLayer() takes different arguments depending on the browser
type, we didn’t bother to return the map object with getThisMap(). Instead,
we supplied the map object using the syntax required by each browser.

Note If you are supporting the Netscape browser, you must provide the name
of the Java observation applet as a second argument to addMapLayer().

Linking Layers

Autodesk MapGuide Author enables you to set map layer attribute properties
for specific display ranges. (Refer to “Setting Style Properties for Layers” in
the Autodesk MapGuide User’s Guide.) For example, you might set a layer to be
invisible when a user zooms out. Using the Viewer API, you can extend this
functionality by linking layers to one or more designated control layers.
Then, if an action such as a zoom-out causes a control layer to become invis-
ible, the API can make the linked layers invisible as well.

In the following example, the onViewChanging() function checks the visi-
bility of three control layers named “States”, “Counties”, and “ZIP Codes”. If
one or more of the control layers is visible, onViewChanging() makes all other
map layers visible; if none of the control layers is visible, onViewChanging()
suppresses visibility of all other map layers.

We’ve named our function onViewChanging() because it’s triggered by the
Viewer API event of the same name. Whenever a Viewer API event is trig-
gered, the Viewer checks for a function whose name matches the event
name. If the function is found, the Viewer invokes it, passing arguments that
vary by event.

Unlike the previous examples, onViewChanging() takes an argument, which
is an MGMap object passed by the onViewChanging event. Because the event
provides an instance of the map object, we don’t need to obtain it with
getThisMap().
Performing Common Tasks with the API | 33

function onViewChanging(thisMap) // ’thisMap’ is MGMap object provided by event
{

var states = thisMap.getMapLayer ("States");
var countries = thisMap.getMapLayer("Counties");
var zipCodes = thisMap.getMapLayer("ZIP Codes");
var vis =

(states.getVisibility() ||
counties.getVisibility() ||
zipCodes.getVisibility());

var layers = thisMap.getMapLayersEx();
for (var i = 0; i < layers.size(); i++)
{

var layer = layers.item(i);
if (!layer.equals(states)

&& !layer.equals(counties) && !layer.equals(zipCodes))
{

layer.setVisibility(vis);
}

}
}

The function starts by using the getMapLayer() API method to return each of
the control layers as objects. Those objects are assigned to three variables
named “states”, “counties”, and “zipCodes”:

var states = thisMap.getMapLayer ("States");
var countries = thisMap.getMapLayer("Counties");
var zipCodes = thisMap.getMapLayer("Zip Codes");

Next, onViewChanging() uses the getVisibility() method to determine if any of
the control layers are visible. If at least one control layer is visible (i.e., if states
is visible or counties is visible or zipCodes is visible), getVisility() returns the
Boolean value “true”, thus setting the vis variable to “true”. Otherwise, it sets
vis to “false”:

var vis =
(states.getVisibility() || counties.getVisibility() || zipCodes.getVisibility());

Then onViewChanging() uses the getMapLayersEx() method to create a layer
collection and assign it to a variable named “layers”:

var layers = thisMap.getMapLayersEx(); // create layer collection

Finally, the function uses a for loop to cycle through each map layer. Each
time the loop encounters a layer that is not one of the control layers, that
layer is made visible or invisible, depending on the value of vis:

for (var i=0; i < layers.size(); i++)
{

var layer = layers.item(i);
if (!layer.equals(states) && !layer.equals(counties)

&& !layer.equals(zipCodes))
{

layer.setVisibility(vis);
}

}

34 | Chapter 3 Viewer API Examples

Retrieving Keys of Selected Features

In this example, the doGetKey() function displays a dialog box showing the
keys of selected map features (keys are unique values that are used to identify
individual map features). If no features are selected, an alert displays
prompting the user to make a selection:

function doGetKey()
{

var map = getThisMap();
if (map.getSelection().getNumObjects() == 0)
{

alert ("Please make a selection first.");
return;

}
var sel = map.getSelection();
var objs = sel.getMapObjectsEx(null);
var cntObjects = objs.size();
var msg = "Keys of selected features are:\n";
var i;
for (i = 0; i < cntObjects; i++)
{

var obj = objs.item(i);
var key = obj.getKey();
msg = msg + obj.getMapLayer().getName() + " " + key + "\n";

}
alert(msg);

}

The function starts by getting an instance of MGMap:

var map = getThisMap();

Then it uses two API methods to see if any features are selected. Note that the
methods are concatenated; the first method, getSelection(), operates on the
map and returns a selection object, which is then passed to the second
method, getNumObjects(), for processing. If no features are selected, an alert
displays and the function terminates; otherwise, the selection is assigned to
a variable named “sel”:

if (map.getSelection().getNumObjects() == 0)
{

alert ("Please make a selection first.");
return;

}
var sel = map.getSelection();

Next, doGetKey() calls the getMapObjectsEx() API method and passes its
return value (a collection of the selected features) to a variable called “objs”.
Note that if you use getMapObjectsEx() with a map layer, it returns an
MGCollection object made up of all the features on a layer, but by using the
Performing Common Tasks with the API | 35

method with the selection object, and by passing it “null” as a parameter, it
returns the features in the current selection only:

var objs = sel.getMapObjectsEx(null);

Then the function calls the MGCollection size() method, which returns a
count of the objects in the collection; that number is assigned to a variable
called “cntObjects”:

var cntObjects = objs.size();

After that, doGetKey() uses a for loop to cycle through the feature collection,
placing all of the feature names in a single variable called “msg”:

var msg = "Keys of selected features are:\n"; // variable to hold feature names
var i; // loop counter variable
for (i = 0; i < cntObjects; i++) // iterate from 0 to cntObjects
{

var obj = objs.item(i);
var key = obj.getKey();
msg = msg + obj.getMapLayer().getName() + " " + key + "\n";

}

The cntObjects variable tells the for loop to iterate one time for each object.
At each iteration, the loop counter variable (i) is incremented and the
following statements are processed:

var obj = objs.item(i);
var key = obj.getKey();
msg = msg + obj.getMapLayer().getName() + " " + key + "\n";

The first statement uses the item() API method to select an object from the
collection and assign it to a variable called “obj”.

The second statement operates on the obj variable, first using the getKey()
API method to obtain the key of the feature represented by that variable, and
then assigning that name to the msg variable. The last line puts it all together
by concatenating the previous contents of msg, a layer name obtained by the
getName() method, a space character, the contents of key, and a JavaScript
newline. After all selected features have been added to msg, the contents of
the variable are displayed in a JavaScript alert() box:

alert(msg);
36 | Chapter 3 Viewer API Examples

Displaying keys of selected features

Retrieving Coordinates of a Selected Feature

The doGetCoordinates() function displays a dialog box showing the coordi-
nates of a selected feature:

function doGetCoordinates()
{

var map = getThisMap();
var sel = map.getSelection();
var layer = map.getMapLayer("Parcels");
if (layer == null)
{

alert("No Parcels layer found in this map.");
return;

}
if ((sel.getNumObjects() > 1) || (sel.getNumObjects() == 0) ||

(sel.getMapObjectsEx(layer).size() == 0))
{

alert("Select only one parcel, please.");
return;

}
var obj = sel.getMapObjectsEx(layer).item(0);
var vertices = map.createObject("MGCollection");
var cntVertices = map.createObject("MGCollection");
var res = obj.getVertices(vertices, cntVertices);
if (res == 0)
{

alert("No access to coordinate information.");
return;

}
msg = "Parcel:" + obj.getKey() + "\n";
Performing Common Tasks with the API | 37

msg = msg + "Coordinates in MCS unit\n";
for(var i = 0; i < cntVertices.item(0); i++)
{

var pnt = vertices.item(i);
msg = msg + pnt.getX() + "," + pnt.getY() + "\n";

}
alert(msg);

}

The function starts by using getThisMap() to get an instance of the map; then
it gets the current selection and assigns it to a variable called “sel”:

var map = getThisMap();
var sel = map.getSelection();

Then doGetCoordinates() uses the getMapLayer() method to select the
“Parcels” layer and assign it to a variable named “layer”; if the layer doesn’t
exist in the map, an alert displays and the function terminates:

var layer = map.getMapLayer("Parcels");
if (layer == null)
{

alert("No Parcels layer found in this map.");
return;

}

Next, doGetCoordinates() uses the getNumObjects() and getMapObjectsEx()
methods to verify that one, and only one, feature is selected, and that the
current layer is not empty. If the criteria are not met, an alert displays and
the function terminates:

if ((sel.getNumObjects() > 1) ||
(sel.getNumObjects() == 0) ||
(sel.getMapObjectsEx(layer).size() == 0))

{
alert("Select only one parcel, please.");
return;

}

After that, the function creates some more variables. The “obj” variable
contains the first (and only) object in the current selection. The “vertices”
and “cntVertices” variables hold empty MGCollection objects:

var obj = sel.getMapObjectsEx(layer).item(0);
var vertices = map.createObject("MGCollection");
var cntVertices = map.createObject("MGCollection");

Then doGetCoordinates() uses the getVertices() method to get the coordinates
and number of vertices of obj, our selected parcel. The values getVertices()
obtains are passed to the empty vertices and cntVertices collections.

If getVertices() is successful, it returns an integer telling the number of
vertices it found; otherwise, it returns zero. The getVertices() return value is
38 | Chapter 3 Viewer API Examples

passed to a variable called “res”. If getVertices() returns zero, an alert displays
and the function terminates:

var res = obj.getVertices(vertices, cntVertices);
if (res == 0)
{

alert("No access to coordinate information.");
return;

}

Next, doGetCoordinates() uses a for loop to cycle through the vertices collec-
tion, placing all of the coordinate listings in a single variable called “msg”:

msg = "Parcel:" + obj.getKey() + "\n";
msg = msg + "Coordinates in MCS unit\n";
for(var i = 0; i < cntVertices.item(0); i++)
{

var pnt = vertices.item(i);
msg = msg + pnt.getX() + "," + pnt.getY() + "\n";

}

The cntVertices variable tells the for loop to iterate one time for each vertex
in the object. At each iteration, the loop counter variable (i) is incremented
and the following statements are processed:

var pnt = vertices.item(i);
msg = msg + pnt.getX() + "," + pnt.getY() + "\n";

The first statement uses the item() API method to select a vertex from the
collection and assign it to a variable called “pnt”.

The second statement operates on the pnt variable, using the getX() and
getY() methods to get the vertex coordinates and assign them to msg. As with
the previous examples, a new line is added to msg each time the for loop iter-
ates. After all coordinates have been added to msg, the contents of the vari-
able are displayed in a JavaScript alert() box:

alert(msg);

Invoking Select Radius Mode

The doSelectRadius() function gets an instance of the map and uses that
instance to call the selectRadiusMode() API method:

function doSelectRadius()
{

var map = getThisMap();
map.selectRadiusMode();

}

Radius Mode allows the user to digitize a circle and select all map features
that fall within that circle.
Performing Common Tasks with the API | 39

Toggling a Layer On and Off

The layerToggle() function toggles the visibility of a layer that is specified
when the function is invoked:

function layerToggle(l_name)
{

var map = getThisMap();
var layer = map.getMapLayer(l_name);
if (layer == null)

alert("layer not found.");
else
{

layer.setVisibility(!layer.getVisibility());
map.refresh();

}
}

This function takes a layer name as an argument. For instance, it might be
called as follows:

<FORM>
<INPUT TYPE="button" VALUE="Toggle Hydro" ONCLICK="layerToggle('Hydro')">
</FORM>

The layerToggle() function starts by getting an instance of the map object.
Then it passes the function argument, l_name, to the getMapLayer() API
method. The getMapLayer() function returns the specified layer, or it returns
“null” if the layer is not found. The getMapLayer() return value is then
assigned to a variable named “layer”:

var map = getThisMap();
var layer = map.getMapLayer(l_name);

Next, the function checks the value of layer. If it is null, an alert displays;
otherwise the setVisibility() method is used to toggle the layer’s visibility to the
opposite of its current state:

if (layer == null)
alert("layer not found.");

else
{

layer.setVisibility(!layer.getVisibility());
map.refresh(); // after changing visibility, refresh map

}

Note the use of the not operator (!) with the getVisibility() method. This has
the effect of checking the layer’s visibility and returning the opposite of what
it finds.
40 | Chapter 3 Viewer API Examples

Zooming In on Selected Features

The zoomSelect() function zooms in to a selected feature:

function zoomSelect()
{

var map = getThisMap();
var selected = map.getSelection().getMapObjectsEx(null);
if (selected.size()>0)

map.zoomSelected();
else

alert("Nothing selected.");
}

First, the function gets an instance of MGMap. Then, it uses two concate-
nated API methods to retrieve selected features and pass them to the variable
“selected”. The first method, getSelection(), returns a selection object, which
is used by the second method, getMapObjectsEx(). If you use getMap-
ObjectsEx() with a map layer, it returns an MGCollection object containing all
features on the layer, but by using getMapObjectsEx() with the selection
object and passing it “null”, it returns the features in the current selection
only:

var map = getThisMap();
var selected = map.getSelection().getMapObjectsEx(null);

Next, zoomSelect() uses the size() method to see how many features are
selected. If one or more features are selected, the zoomSelected() API method
is invoked, causing the Viewer to zoom to those features. Otherwise, an alert
displays and no zoom occurs:

if (selected.size() > 0)
map.zoomSelected();

else
alert("Nothing selected.");

Before calling zoomSelected() After calling zoomSelected()
Performing Common Tasks with the API | 41

Counting Map Features

The showFeatureCount() function counts the features on each map layer and
adds that count to the legend:

var legendSet; // Global variable, declared outside of function

function showFeatureCount()
{

if (legendSet)
return;

var map = getThisMap();
if (map.isBusy() == false)
// can also be written as 'if (!map.isBusy())'
{

var layers = map.getMapLayersEx();
var cnt = layers.size();
var i;
var msg;
for (i = 0; i<cnt; i++)
{
var layer = layers.item(i);
var objectCount = layer.getMapObjectsEx().size();
var label = layer.getLegendLabel();
label = label + " " + objectCount + " features";
layer.setLegendLabel(label);
}

}
legendSet = true;

}

The function starts by checking the status of the global variable, legendSet. If
legendSet is set to “true”, showFeatureCount() terminates:

if (legendSet)
return;

This keeps showFeatureCount() from printing multiple messages to the legend
if the user clicks the button more than once, as illustrated below:
42 | Chapter 3 Viewer API Examples

Next, showFeatureCount() creates an instance of the map and checks to see if
the map is in a busy state:

var map = getThisMap();
if (map.isBusy() == false)

If the map is not busy, the function continues.

First, it uses the getMapLayersEx() method to obtain a layer collection and
assign it to a variable called “layers”. Then it uses the size() method to get the
number of layers and assign that number to a variable called “cnt”:

var layers = map.getMapLayersEx();
var cnt = layers.size();

Then it creates a loop that counts the features in each layer and uses the
getLegendLabel() and setLegendLabel() methods to report the count in the
map legend:

var i;
var msg;
for (i = 0; i<cnt; i++)
{

var layer = layers.item(i);
var objectCount = layer.getMapObjectsEx().size();
var label = layer.getLegendLabel();
label = label + " " + objectCount + " features";
layer.setLegendLabel(label);

}

Finally showFeatureCount() sets the global legendSet variable to “true”. This
keeps the function from running again until the page containing the map is
refreshed.

legendSet = true;

Before calling showFeatureCount() After calling showFeatureCount()
Performing Common Tasks with the API | 43

Customizing the Printout

Autodesk MapGuide lets map authors and Viewer users control how the
printed map appears on a page. For example, a map author might create a
custom symbol that displays only in the printout. Or, when printing from
the Viewer, a Viewer user might choose to change the map title or suppress
page elements such as the legend, scale bar, or north arrow. The API supports
these user-interface features and also provides additional functionality,
allowing you to write code to change the title font, add a custom symbol, or
control the size and position of any page element on the printout.

As a developer, you can specify that two events be fired each time a map is
sent to the printer. The first event, onBeginLayout, is fired after a user clicks
OK in the Print dialog box, but before the Viewer lays out the page elements
that will be sent to the printer. The second event, onEndLayout, is called after
the Viewer lays out the page elements, but before the elements are sent to the
printer. By writing event handler functions for these events, you can inter-
cept the page before it gets to the printer and customize it to your liking.

Enabling the Print Events

By default, onBeginLayout and onEndLayout are not fired; you enable and
disable them using the enablePrintingEvents and disablePrintingEvents
methods. For Netscape and the Java edition, you will also need to use the
setPrintingObserver method to specify the event observer. Here’s one way to
write a JavaScript function that enables print events:

function enable_print_events()
{
 var map = getThisMap();
 map.enablePrintingEvents();
 if (navigator.appName == "Netscape")
 map.setPrintingObserver(obs);
}

Writing Event Handler Functions

The sections that follow show how to write JavaScript and Java event
handlers for onBeginLayout and onEndLayout.

onBeginLayout

If you want your event handling code to control settings from the Viewer’s
Page Setup dialog box, you should attach it to the onBeginLayout event. Two
objects, an MGPageSetup and an MGPrintInfo, are passed automatically to
onBeginLayout when that event is fired:

void onBeginLayout (MGPageSetup pgSetup, MGPrintInfo info)
44 | Chapter 3 Viewer API Examples

The MGPageSetup object describes the state of the Page Setup dialog box
immediately before the user clicked OK in the Print dialog box. The MGPrint-
Info object provides information about the resolution of the output device
and the size of the printable area of the page.

The following example shows one way to write an onBeginLayout event
handler that suppresses all page elements except the map. The example
assumes you’ve set up the Java event applet, and that you’ve already enabled
the print events, as shown above.

First, create a button on the HTML page:

<form>
 <input type="button" value="Just the Map"

OnClick="print_map_only();" name="myButton">
</form>

Then, create a JavaScript function that the button will call. In this example,
the function sets the state of a boolean variable called “map_only”. The vari-
able will be read by our event handler, so we’ve given it global scope by
declaring it outside the function body.

var map_only; // put var outside function body
function print_map_only()
{
 map_only = "true";
 getThisMap().printDlg();
 map_only = "false";
}

Finally, we write our event handler. It goes in the HTML page (or .js file), just
like any other JavaScript function. This function is executed automatically
every time the onBeginLayout event fires. Note that the function takes an
MGPageSetup and an MGPrintInfo as its parameters.

function onBeginLayout (pgSetup, info)
{
 if (map_only == "true")
 {
 pgSetup.setInclude("mg_legend", false);
 pgSetup.setInclude("mg_northarrow", false);
 pgSetup.setInclude("mg_scalebar", false);
 pgSetup.setInclude("mg_title", false);
 pgSetup.setInclude("mg_timestamp", false);
 pgSetup.setInclude("mg_url", false);
 }
}

Note You can control the Page Setup without using onBeginLayout, but the
results are different. In the example above, the Page Setup is modified only for
that printout. Because the event handler is working with a copy of the
MGPageSetup object, subsequent printouts from the popup menu don’t show
these changes, and the changes don’t appear in the Page Setup dialog box. If you
Performing Common Tasks with the API | 45

were to write a similar function that was not attached to the onBeginLayout
event, the changes would continue to be reflected in both the printout and the
Page Setup dialog box until the map is refreshed.

onEndLayout

If you want your event handling code to change the title font, add a custom
symbol, or control the position and size of any page element, you should
attach it to the onEndLayout event. Two objects, an MGPrintLayout and an
MGPrintInfo, are passed automatically to onEndLayout when that event is
fired:

void onEndLayout (MGPrintLayout prLayout, MGPrintInfo info)

The MGPrintLayout object provides access to printed page elements; you can
then use MGPageElement and MGExtentEx to control how those elements
display. The MGPrintInfo object provides information about the resolution of
the output device and the size of the printable area of the page.

The following example shows a printing event handler, written in Java, that
adds a custom symbol to the printout. Note that this example includes event
handlers for both onEndLayout and onBeginLayout. The example assumes
you’ve set up the Java event applet, and that you’ve already enabled the print
events:

public class MyObserver extends Applet implements MGPrintingObserver
{
 public void onBeginLayout(MGPageSetup pgSetup, MGPrintInfo info)
 {
 // turn off all elements except the map
 pgSetup.setInclude("mg_scalebar", false);
 pgSetup.setInclude("mg_northarrow", false);
 pgSetup.setInclude("mg_title", false);
 pgSetup.setInclude("mg_timestamp", false);
 pgSetup.setInclude("mg_legend", false);
 }

 public void onEndLayout(MGPrintLayout layout, MGPrintInfo info)
 {
 int pixelsPerInch = info.getPageResolution();

 // retrieve the page elements from the MGPrintInfo class
 MGPageElement mapEle = layout.getPageElement("mg_map");
 MGPageElement logoEle = layout.addSymbol("mylogo");

 // get the extents of the page elements
 MGExtentEx mapExt = mapEle.getExtent()
 MGExtentEx logoExt = logoEle.getExtent();

 // set the width and height of the logo to 1" by 1"
 logoExt.set(mapExt.getMinX(), mapExt.getMinY(),
 mapExt.getMinX() + pixelsPerInch,
 mapExt.getMinY() + pixelsPerInch);

logoEle.setExtent(logoExt);
 }
}

46 | Chapter 3 Viewer API Examples

Positioning Page Elements with the Print Coordinate
System

Page element extents specified through the API are expressed in Page Coor-
dinate System (PCS) units. The origin (0,0) of this system is located at the
upper-left corner of the paper. Its exact location depends on the current left
and top margins. Unlike the coordinate system that is used on a map, the Y
values increase in the downward direction and the X values increase to the
right. Like the device unit type, the default PCS unit type is a pixel.

Setting the Print Priority

As shown above, you can write an onEndLayout event handler that uses
MGPrintLayout, MGPageElement, and MGExtentEx to control the placement of
printed page elements. It is possible, and sometimes desirable, to place page
elements on top of each other. For example, you might want to move the
north arrow on top of an empty spot of ocean in your map. Of course, this
doesn’t do your user much good if the ocean prints on top of the north arrow
and hides it.

To solve this problem, each page element is assigned a default print priority.
A print priority is a positive floating-point number between 0.0 and 100.0
that describes the relative printing order of a page element. The element with
the lowest number is printed first. The element with the highest number is
printed last. You can read and change an element’s priority with the
getPrintPriority and setPrintPriority methods. The default print priority values
are as follows:
Performing Common Tasks with the API | 47

The following example shows an onEndLayout event handler, written in
JavaScript, that forces the title to be printed after the north arrow.

function onEndLayout(layout, info)
{
 // retrieve arrow and map elements
 var el_arrow = layout.getPageElement("mg_northarrow");
 var el_map = layout.getPageElement("mg_map");

 // force arrow to have higher print priority than map
 el_arrow.setPrintPriority(el_map.getPrintPriority() + 1);
}

Adding Custom Page Elements

You can add custom page elements to the printout. Currently, the API can
only access symbols in the API symbol list. The API symbol list is a WMF or
EMF file containing a small set of predefined symbols. Additional symbols
can be added to the list using Autodesk MapGuide Author. Refer to the
Autodesk MapGuide Help for more information.

The following example shows an onEndLayout event handler, written in
JavaScript, that adds a custom logo to the top left corner of the printout. Note
that the logo is rotated 90°. This example assumes that the “MyLogo” symbol
has been added to the API symbol list by the map author:

Element Default Print Priority

map 10.0

legend 20.0

title 30.0

URL 40.0

date/time 50.0

scale bar 60.0

north arrow 70.0

custom elements 80.0
48 | Chapter 3 Viewer API Examples

function onEndLayout(layout, info)
{
 // add 'MyLogo' symbol to layout and return as 'sym'
 var sym = layout.addSymbol("MyLogo");

 // function ends if symbol doesn't load properly
 if (sym == null) return;
// display symbol the top-left corner of page
 MGExtentEx ext = sym.getExtent();
 ext.set(0, 0, 600, 600);
 sym.setExtent(ext);

 // rotate symbol
 var attr = sym.getSymbolAttr();
 if (attr != null) {
 attr.setRotation(-90.0);
 }
}

Advanced Applications

Now that you know how to create a basic application and perform common
tasks, you are ready to explore the more advanced applications you can
create with the Viewer API. This section provides three examples of how you
might use the Viewer API to create an advanced application. The Autodesk
MapGuide web site provides several examples, both demo applications and
real customer sites, that demonstrate how to create solutions for complex
needs. You can find the links to the demo applications, customer sites, and
more at www.mapguide.com.

When you have finished reviewing the following example, be sure to read
Chapter 4, “Using Reports to Query and Update Data Sources.” Chapter 4
provides more information about creating custom reports and server-side
scripts that enable users to dynamically update attribute data sources, a tech-
nique illustrated in the municipal demo, which begins on page 53.

Custom Redlining Application

Redlining applications allow a user to add annotations to a drawing or map
without using the original authoring application or modifying the original
document. You can use the Autodesk MapGuide Viewer API to create a
custom redlining application that allows users to mark up a map using the
Viewer. The user’s markups are saved to a special layer type called a client
redline layer. Client markups can be printed or saved (along with the rest of
the map) to an MWF.

You can make your application as sophisticated as your needs warrant, but
the basic process for creating a redlining application is simple:
Advanced Applications | 49

1 Use the createLayer method to create the redline layer, or, if the layer
already exists, you can access it with getMapLayer.

2 Use createMapObject to add an empty redline object to the layer.

3 Use the MGMapObject add methods to add one or more primitives to the
redline object (primitives are the individual symbols, polylines, polygons,
or text blocks that make up a redline object). You can add a single primi-
tive or combine several primitives to create a complex object. For exam-
ple, you might create a complex object consisting of an arrow and a text
callout.

4 Use the saveMWF method to save the map file to an MWF on the user’s
machine or a network server.

Note For information about adding and deleting features from the data source
itself (such as an SDF file), rather than saving changes to an MWF, see “Updating
SDF Files via the Map” on page 136.

A Redlining Application Example

The following example shows one way to write a simple redlining applica-
tion. The application lets the user create a redlining layer, add polygon
objects to that layer, and save the map to a drive on a local machine. The user
interface is sparse, consisting of a small HTML form with a text box and two
buttons, as shown in the following illustration.

Redlining example
50 | Chapter 3 Viewer API Examples

Here is the code for the form:

<FORM NAME="the_form">
 Polygon Name: <INPUT TYPE="text" VALUE="" NAME="the_textbox">
 <INPUT TYPE="button" VALUE="Add/Update Polygon" On-
Click="add_pgon();" NAME="a_button">
 <INPUT TYPE="button" VALUE="Save It!" OnClick="save_it();"
NAME="another_button">
</FORM>

The Add/Update Polygon button calls a JavaScript function that lets the user
draw a polygon by digitizing points on the map. The function first checks to
see if there’s a value in the Polygon Name check box. If there is a value, the
function calls either the digitizePolygon or digitizePolygonEx method. Other-
wise, the function displays an alert and exits:

function add_pgon()
{
 // get map object
 var map = getThisMap();

 // exit function if 'Polygon Name' text box is empty
 if (document.the_form.the_textbox.value == "")
 {
 alert("Please enter a polygon name.")
 return;
 }

 // if browser is Netscape, use 'Ex' version and pass
 // observer applet; if browser is Internet Explorer,
 // use 'non-Ex' version with no argument
 if (navigator.appName == "Netscape")
 map.digitizePolygonEx(document.obs);
 else
 map.digitizePolygon();
}

The digitizePolygon and digitizePolygonEx methods both fire the onDigitized-
Polygon event, passing it the map object, the number of polygon vertices,
and the coordinates of those vertices. The onDigitizedPolygon event looks for
a JavaScript function of the same name and, if that function exists, executes
it. In fact, the onDigitizedPolygon function does exist, because we’ve created
it. Here’s the code for that function:

function onDigitizedPolygon(map, numPoints, points)
{
 // create variable and assign it user-specified value
 // from 'Polygon Name' text box
 var formText = document.the_form.the_textbox.value;

 // create redline layer, or get it if it already exists
 var myLayer = map.getMapLayer("My Redline Layer");
 if (myLayer == null)
 myLayer = map.createLayer("redline", "My Redline Layer");
Advanced Applications | 51

Note
Be sure t
“\\” in
“\”.
 // create redline object or get it if it exists (getMapObject
 // takes an object key as its value, while createMapObject takes

 // a key and a name -- the formText variable supplies both of
 // those values)

 var obj = myLayer.getMapObject(formText);
 if (obj == null)
 var obj = myLayer.createMapObject(formText, formText, "");

 // create MGCollection that holds user-specified polygon vertices
 var user_vertices = map.createObject("mgcollection");
 user_vertices.add(numPoints);

 // use MGCollection to create polyline primitive and add it to
 // redline object

 obj.addPolylinePrimitive(points, user_vertices, false);

 // clear contents of 'Polygon Name' text box
 document.the_form.the_textbox.value = "";
}

The Save It! button calls a JavaScript function that saves the map to the user’s
hard drive. The function prompts the user for the map password, then calls
the saveMWF method and saves the map to the specified path:

function save_it()
{
var fName = "c:\\My Documents\\my_map.mwf";
var password = prompt("Please enter a password.", "");

 if (getThisMap().saveMWF(fName, password))
 alert("Map has been saved!");
 else
 alert("Unable to save map.");
}

For More Information

This example was a very simple application designed to illustrate redlining,
but you will probably want your application to have more features, such as
allowing users to add other primitives besides polygons. You might also want
it to exert more control over how the primitives appear onscreen or to query
the state of existing redline objects. To learn more about these topics, refer to
the following sections in the Autodesk MapGuide Viewer API Help:

� For information about creating primitives, look up the MGMapObject add
methods (addCirclePrimitive, addPolygonPrimitive, etc.). Also look up the
MGMap digitize methods and their corresponding events.

� For information about controlling the appearance of redline objects, look
up MGEdgeAttr, MGFillAttr, MGLineAttr, MGSymbolAttr, MGTextAttr, and
MGRedlineSetup.

� For information about querying redline objects, look up MGPrimitive.

o use “/” or
the path, not
52 | Chapter 3 Viewer API Examples

Municipal Application

This application demonstrates how you could monitor the water and sewer
systems of a city. In the event of water distribution system problems, the
application can notify the user, or a user can add an incident to the map and
generate reports. The application uses color digital imagery to help orient the
user.

On the left side of the window, the standard legend allows you to turn layers
on and off and select them. On the right side of the window, notice the addi-
tional controls. These controls interact with the map through the Viewer API.

The application includes an incident monitor, which can notify the user if
there are problems with the water distribution system. The layer control
allows you to turn off the incident layer, turn off all vector layers at once, and
turn off the raster layer. These controls are useful for finding information
quickly. Lastly, the “digitize incident” and “reporter” buttons allow the user
to add an incident to the map and generate reports about selected features.

Municipal application
Advanced Applications | 53

Source Code

Following is the source code for the controls. Additional comments have
been added to the code to give you a better idea of how the scripting works.
To view the source code for the other frames in this application, go to the
application online at www.autodesk.com/mapguidedemo.

Municipal Application

<HTML>
<HEAD>
<TITLE>MUNICIPAL</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--

// Get full browser name and assign it to tempName variable;
// then assign first 8 letters of tempName to browserName variable
var tempName = navigator.appName;
var browserName = tempName.substring(0,8);

// Map object variable, to be used later
var MyMap;

// Set browserId variable: '1' for netscape, '2' for IE, else '0'
if (browserName == 'Netscape')

var browserId = 1;
else if (browserName == 'Microsof') // just first 8 letters...

browserId=2;
else

browserId = 0;

// =-= //
// Function: getMyMap()
// Description: Get appropriate map object for IE or Netscape
// **Same concept as getThisMap() example on page 15)**
// Arguments: none
// Returns: map object
// =-= //
function getMyMap()
{

// Get appropriate MGMap object; type depends on browserId value
if (browserId == 1)

MyMap = top.main.document.embeds[0]; // Netscape map object
else if (browserId == 2)

MyMap = top.main.document.MyMap; // IE map object
else

MyMap = null; // none if other browser
return MyMap; //return map object

}

54 | Chapter 3 Viewer API Examples

For mo
See Cha
Reports t
Update D
// =-= //
// Function: notify()
// Description: Turns on Incident Monitor by calling
// CreateInWindow() function, below
// Arguments: none
// Returns: nothing
// =-= //
function notify()
{

// Call function
CreateInWindow();

}

// =-= //
// Function: CreateInWindow()
// Description: Calls a ColdFusion file and generates the
// resulting incident report in a new window (called by 'On'
// button, under 'Incident Monitor')
// Arguments: none
// Returns: nothing
// =-= //

// First, a global variable, defined *outside* of the function body
var InWindow;

// Function starts here
function CreateInWindow()
{

// Set 'URL' variable to location of ColdFusion file used to
// generate report (see Chapter 4 for more information); then
// open URL in new window called 'InWindow'
var URL =

"http://www.gridnorth.com/interdemo/municipal/reports/Incident1.cfm"
InWindow = open(URL,"InWindow", "toolbar=no,width=480,

height=350,directories=no,status=no,
scrollbars=YES,resizable=YES,menubar=no")

}

// =-= //
// Function: notifyoff()
// Description: Closes window containing incident report
// (called by 'Off' button, under 'Incident Monitor')
// Arguments: none
// Returns: nothing
// =-= //
function notifyoff()
{

// If 'InWindow' doesn't exist, or if it's already closed,
// terminate function; otherwise close 'InWindow'

Municipal Application (continued)

re info...
pter 4,“Using
o Query and
ata Sources.”
Advanced Applications | 55

if ((InWindow == null) || (InWindow.closed))
return;

else
InWindow.close();

}

// =-= //
// Function: Incidents(type)
// Description: Turns Incidents layer on or off (called by
// ON/OFF buttons, under Layer Control: Incidents)
// Arguments: string ('On' or 'Off')
// Returns: nothing
// =-= //
function incidents(type)
{

myMap = getMyMap(); // Get instance of MGMap
if (myMap.isBusy() == false) // If Viewer is not busy...
{

// ...get "Incidents" layer
var MyLayer1 = myMap.getMapLayer("Incidents");

// If function was called with 'Off', make the
// layer invisible; otherwise make the layer visible
if (type == 'Off')

MyLayer1.setVisibility(false);
else

MyLayer1.setVisibility(true);

// Tell the Viewer to rebuild layer when map is refreshed;
// then refresh map
MyLayer1.setRebuild(true);
myMap.refresh();

}
// If Viewer is busy, don't do the stuff above;
// instead, display alert
else

 alert("The Viewer is busy. Please try again in a few seconds.");
}

// =-= //
// Function: vector(type)
// Description: Turns vector layers on or off (called by
// ON/OFF buttons, under Layer Control: Vector Layers)
// Arguments: string ('On' or 'Off')
// Returns: nothing
// =-= //
function vector(type)
{

myMap = getMyMap(); // Get instance of MGMap

Municipal Application (continued)
56 | Chapter 3 Viewer API Examples

if (myMap.isBusy() == false) // If Viewer is not busy...
{

// ...assign a bunch of layers to a bunch of variables
var MyLayer2 = myMap.getMapLayer("Population > 100000");
var MyLayer3 = myMap.getMapLayer("Population > 50000");
var MyLayer4 = myMap.getMapLayer("Population > 500");
var MyLayer5 = myMap.getMapLayer("Population > 0");
var MyLayer6 = myMap.getMapLayer("Railroads");
var MyLayer7 = myMap.getMapLayer("Interstates");
var MyLayer8 = myMap.getMapLayer("Highways");
var MyLayer9 = myMap.getMapLayer("Major Roads");
var MyLayer10 = myMap.getMapLayer("Minor Roads");
var MyLayer11 = myMap.getMapLayer("Water Service Acct.");
var MyLayer12 = myMap.getMapLayer("Water - 3 inch Valves");
var MyLayer13 = myMap.getMapLayer("Water - Point of Service");
var MyLayer14 = myMap.getMapLayer("Water - Distribution");
var MyLayer15 =

myMap.getMapLayer("Water - 3 inch Distribution");

var MyLayer16 =
myMap.getMapLayer("Marin County Land Parcels");

var MyLayer17 = myMap.getMapLayer("Population Density");
var MyLayer18 = myMap.getMapLayer("ZIP Codes");
var MyLayer19 = myMap.getMapLayer("Counties");

// If function was called with 'Off', make the
// following layers invisible...
if (type == 'Off')
{

for (i=2; i<20; i++;)
{

MyLayer[i].setVisibility(false);
}

}
// ...otherwise, make the following layers visible
else
{

for (i=2; i<20; i++;)
{

MyLayer[i].setVisibility(true);
}

}
// Tell the Viewer to rebuild the following layers
// when the map is refreshed
for (i=2; i<20; i++;)
{

MyLayer[i].setRebuild(true);
}
// Refresh the map

Municipal Application (continued)
Advanced Applications | 57

myMap.refresh();

// End the if statement that verified not busy
}
// If Viewer is busy, don't do the stuff above;
// instead, display alert
else

 alert("The Viewer is busy. Please try again in a few seconds.");

// End the function
}

// =-= //
// Function: raster(type)
// Description: Turns raster layer on or off. (called by
// ON/OFF buttons, under Layer Control: Raster Layers)
// Arguments: string ('On' or 'Off')
// Returns: nothing
// =-= //
function raster(type)
{

myMap = getMyMap(); // Get instance of MGMap

// If Viewer is not busy get current map scale, then assign
// "San Rafael" layer to MyRastLayer variable...
if (myMap.isBusy() == false) {

var CurrentScale = myMap.getScale();
var MyRastLayer = myMap.getMapLayer("San Rafael");

// If scale is less than 1:20,000 and if function was called
// with 'On', make MyRastLayer visible
if (CurrentScale < 20000 && type == 'On')
{

MyRastLayer.setVisibility(true);
MyRastLayer.setRebuild(true);
myMap.refresh();

}
// If scale is less than 1:20,000 and if function was called
// with 'Off', make MyRastLayer invisible.
if (CurrentScale < 20000 && type == 'Off')
{

MyRastLayer.setVisibility(false);
MyRastLayer.setRebuild(false);
myMap.refresh();

}
}
// If Viewer is busy, don't do the stuff above;
// instead, display alert
else

Municipal Application (continued)
58 | Chapter 3 Viewer API Examples

For mo
See Cha
Reports t
Update D
 alert("The Viewer is busy. Please try again in a few seconds.");
}

// =-= //
// Function: digit()
// Description: Lets users create report data for a specified
// point. (called by the 'Digitize Incident' button, under
// 'Incident Entry & Reporting')
//
// NOTE: This function just gathers the point coordinates,
// fires the onDigitizedPoint event, and passes the coordinates
// to that event. The event is linked to a function (defined
// in a separate frame -- see www.autodesk.com/mapguidedemo for
// the source) that runs a ColdFusion file and creates a new
// window to hold the ColdFusion-generated HTML output. The HTML
// output includes a form that lets enter text and add that text
// to the map as point data. See Chapter 4 for more information
// about ColdFusion.
//
// Arguments: none
// Returns: nothing
// =-= //
function digit()
{

// Use browserId variable (defined at beginning of script)
// to determine if user has Netscape or Internet Explorer;
// doesn't bother to call getMyMap(), because entire function
// varies by browser

// If Netscape...
if (browserId == 1)
{

// Get instance of MGMap, assign to MyMap variable
MyMap = parent.main.document.embeds[0];

// If Viewer is not busy, call digitizePoint() method;
// otherwise display alert (because digitizePoint() fires
// the onDigitizedPoint event, we must pass the observer
// as a function argument)

if (myMap.isBusy() == false)
MyMap.digitizePoint(parent.rightempty.document.obs);

else
alert("The Viewer is busy. Please try again in a few sec-

onds.");
}
// If Internet Explorer...
if (browserId == 2)
{

Municipal Application (continued)

re info...
pter 4,“Using
o Query and
ata Sources.”
Advanced Applications | 59

// Get instance of MGMap, assign to MyMap variable
MyMap = parent.main.document.MyMap;

// If Viewer is not busy, call digitizePoint() API method;
// otherwise display alert
if (myMap.isBusy() == false)

MyMap.digitizePoint();
else

alert("The Viewer is busy. Please try again in a few sec-
onds.");

}
}

// =-= //
// Function: reporter()
// Description: Generates report data for selected map features
// (called by 'Reporter' button, under 'Incident Entry
// & Reporting)
// Arguments: none
// Returns: nothing
// =-= //
function reporter()
{

myMap = getMyMap(); // Get instance of MGMap

// If Viewer is not busy...
if (myMap.isBusy() == false)
{

// Get object representing current selection, assign; then
// get number of map features in that selection
var MySel = MyMap.getSelection();
var NumSel = MySel.getNumObjects();

// If selection has at least one object, display View Reports
// dialog; otherwise display alert
if (NumSel > 0)

MyMap.viewReportsDlg();
else

alert("You need to select map features before you can
generate a report.");

}
// If Viewer is busy, don't do the stuff above;
// instead, display alert
else

alert("The Viewer is busy. Please try again in a few seconds.");
}

// =-= //

Municipal Application (continued)
60 | Chapter 3 Viewer API Examples

// Function: showIncidents()
// Description: Constructs SQL 'WHERE' statement requesting map
// features (request is based on user's selection from 'Date' and
// 'Status' drop-downs, under 'Incident Entry & Reporting'); sends
// the SQL statement to the database that's linked to the 'Incidents'
// layer; then refreshes the map, causing the requested features
// to display
// Arguments: none
// Returns: none
// =-= //
function showIncidents()
{

myMap = getMyMap(); // Get instance of MGMap

// If Viewer is not busy...
if (MyMap.isBusy() == false)
{

// If user has old copy of Viewer
// display alert only
var ApiVersion = MyMap.getApiVersion();
if (ApiVersion < 5.0)
{

alert("This control uses the latest technology in the\n
Autodesk MapGuide Viewer Release 5 API. Please \n
download the latest Viewer from the Autodesk MapGuide\n
web site (www.autodesk.com/mapguide).");

}
// If user has recent copy of Viewer (API version 5.0
// or greater)...
else
{

// Assign array of possible drop-down list options
// to selValue variable; then assign name of selected
// list item to 'temp' variable ('Selection' is the
// HTML form, 'Status' is the 'status:' drop-down list)
var selValue = document.Selection.Status.options;
for (var i = 0; i < selValue.length; i++)
{

if (selValue[i].selected)
{

var temp = selValue[i].value;
}

}
// If user selected 'Show All', assign text string to
// whereClause1 varible
if (temp == 'showAll')
{

var whereClause1 = "Status is not null";
}

Municipal Application (continued)
Advanced Applications | 61

// If user selected any other drop-down item, assign
// whereClause1 the string "Status=" plus the list item name
// (i.e., "Status='New'" or "Status='Old'")
else
{

var whereClause1 = "Status='" + temp + "'";
}

// Assign array of possible drop-down list options
// to selValue variable; then assign name of selected
// list item to 'temp2' variable ('Selection' is the
// HTML form, 'myDate' is the 'date:' drop-down list)
var selValue = document.Selection.myDate.options;
for (var i=0; i < selValue.length; i++)
{

if (selValue[i].selected)
{

var temp2 = selValue[i].value;
}

}
// The temp2 variable now represents user's selection -- use
// it to assign appropriate date-related SQL statement to the
// whereClause2 variable (date is generated on the server
// by Coldfusion, then sent to the browser as text)
if (temp2 == 'today')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #04/01/99#"

}
else if (temp2 == 'last2days')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #03/30/99#"

}
else if (temp2 == 'last7days')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #03/25/99#"

}
else if (temp2 == 'last15days')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #03/17/99#"

}
else if (temp2 == 'last30days')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #03/02/99#"

}

Municipal Application (continued)
62 | Chapter 3 Viewer API Examples

else
{

whereClause2 = "ReportDate is not null";
}

// Combine the two SQL statements into one
whereClause = ((whereClause1) + " AND " + (whereClause2));

// Create an object representing the database setup for
// the 'Incidents' layer, then assign that object to
// a variable called 'MyDatabaseSetup'
var MyMapLayer = MyMap.getMapLayer("Incidents");
var MyLayerSetup = MyMapLayer.getLayerSetup();
var MyDatabaseSetup = MyLayerSetup.getDatabaseSetup();

// Run SQL statement you created on the database linked
// to the 'Incidents' layer; then refresh the map, causing
// the items you queried to display in the map.
MyDatabaseSetup.setWhereClause(whereClause);
MyMap.refresh();

}
}

}
// =-= //
// Function: pageSetup()
// Description: Displays the page setup dialog (called by
// the 'Print Setup' button, under 'Print Map')
// Arguments: none
// Returns: nothing
// =-= //
function pageSetup()
{

myMap = getMyMap(); // Get instance of MGMap

// If Viewer is not busy, display Page Setup dialog;
// otherwise display alert
if (myMap.isBusy() == false)

myMap.pageSetupDlg();
else

 alert("The Viewer is busy. Please try again in a few seconds.");
}

// =-= //
// Function printMap()
// Description: Displays Print dialog (called by the
// 'Print' button, under 'Print Map')
// Arguments: none
// Returns: nothing
// =-= //

Municipal Application (continued)
Advanced Applications | 63

function printMap()
{

myMap = getMyMap(); // Get instance of MGMap

// If Viewer is not busy, display Print dialog;
// otherwise display alert
if (myMap.isBusy() == false)

myMap.printDlg();
else

 alert("The Viewer is busy. Please try again in a few seconds.");
}

//-->
</SCRIPT>

<-! Rest of page is straight HTML, with the exception of FORM
elements that call the JavaScript functions defined above. ->
</HEAD>
<BODY BGCOLOR="#CCCC99">
<-! Remainder of page is FORM containing a nested table ->
<FORM NAME="Selection">

<-! Begin table 1 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0 WIDTH=100%>
<TR>
<TD VALIGN=top width=100%>

<-! Begin table 2 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD BGCOLOR="#FFFFFF" VALIGN=MIDDLE ALIGN=CENTER>

</TD>
</TR>
</TABLE>
<-! End table 2 ->

<-! Begin table 3 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD VALIGN=MIDDLE ALIGN=left BGCOLOR="#9c9c63">
<IMG SRC="MENU/qt.gif"

WIDTH=21 HEIGHT=29 BORDER=0 align=right>

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>

Municipal Application (continued)
64 | Chapter 3 Viewer API Examples

<-! Begin table 4 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
</TR>
</TABLE>
<-! End table 4 ->

</TD>
</TR>
</TABLE>
<-! End table 3 ->

<-! Begin table 5->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD VALIGN=MIDDLE BGCOLOR="#9c9c63">
<IMG SRC="MENU/qs.gif"

WIDTH=21 HEIGHT=18 BORDER=0 ALIGN=right>

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>

<-! Begin table 6 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>

Municipal Application (continued)
Advanced Applications | 65

</TR>
</TABLE>
<-! End table 6 ->

<-! Begin table 7 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
</TR>
</TABLE>
<-! End table 7 ->

<-! Begin table 8 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
</TR>
</TABLE>
<-! End table 8 ->

</TD>
</TR>
</TABLE>
<-! End table 5 ->

<-! Begin table 9 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD BGCOLOR="#9c9c63">

Municipal Application (continued)
66 | Chapter 3 Viewer API Examples

<IMG SRC="MENU/qt.gif"
WIDTH=21 HEIGHT=29 BORDER=0 align=right>

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>
<IMG SRC="menu/diginc.gif"

WIDTH=107 HEIGHT=19 BORDER=0>
<IMG SRC="MENU/reporter.gif"

WIDTH=107 HEIGHT=19 BORDER=0>
</TD>
</TR>
</TABLE>
<-! End table 9 ->

<-! Begin table 10 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD COLSPAN="1" ALIGN="CENTER"><IMG SRC="menu/b_date.gif"

WIDTH=27 HEIGHT=12 ALT="" BORDER="0"></TD>
<TD>
<SELECT NAME="myDate" SIZE="1" onChange="showIncidents();">

<OPTION VALUE="showAll">Show all
<OPTION VALUE="today">Today
<OPTION VALUE="last2days">Last 2 days
<OPTION VALUE="last7days">Last 7 days
<OPTION VALUE="last15days">Last 15 days
<OPTION VALUE="last30days">Last 30 days

</SELECT>
</TD>
</TR>
<TR>
<TD>
<IMG SRC="menu/b_status.gif" WIDTH=36 HEIGHT=10 ALT=""

BORDER="0"></TD>
<TD COLSPAN="2">
<SELECT NAME="Status" SIZE="1" onChange="showIncidents();">

<OPTION VALUE="showAll">Show all
<OPTION VALUE="New">New
<OPTION VALUE="Open">Open

</SELECT>
</TD>
</TR>
</TABLE>
<-! End table 10 ->

<-! Begin table 11 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>

Municipal Application (continued)
Advanced Applications | 67

<TR>
<TD BGCOLOR="#9c9c63">
<IMG SRC="MENU/qs.gif"

WIDTH=21 HEIGHT=18 BORDER=0 align=right>

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>
<IMG SRC="MENU/prnsetup.gif"

WIDTH=107 HEIGHT=19 BORDER=0>

<IMG SRC="MENU/print.gif"

WIDTH=107 HEIGHT=19 BORDER=0>

</TD>
</TR>
</TABLE>

<-! End table 11 ->

</TD>
</TR>
</TABLE>
<-! End table 1->

</FORM>
</BODY>
</HTML>

Municipal Application (continued)
68 | Chapter 3 Viewer API Examples

Facility Management Application

The Facility Management (FM) application demonstrates how you can create
a web-based facility management application to manage and maintain
various facilities. Its layout is similar to the municipal application, but it has
more advanced navigation controls on the right. It also allows you to select
features in various ways, generate reports, and even search for an employee
and update his or her information.

Facility Management application
Advanced Applications | 69

Source Code

Following is the source code for the controls. Additional comments have
been added to the code to give you a better idea of how the scripting works.
To view the source code for the other frames in this application, go to the
Demos and Customers section of the Autodesk MapGuide web site
(www.autodesk.com/mapguidedemo), click Interactive Demos, and then click
the Facility Management application. When it is loaded, you can use your
browser’s View Source command to view the complete code behind the page.

Facility Management Application

<HTML>
<HEAD>
<TITLE>FM</TITLE>
<SCRIPT LANGUAGE = "JavaScript">
<!--
// Get full browser name and assign it to tempName variable;
// then assign first 8 letters of tempName to browserName variable
var tempName = navigator.appName;
var browserName = tempName.substring(0,8);

// Map object variable, to be used later
var MyMap;

// Set browserId variable: '1' for netscape, '2' for IE, else '0'
if (browserName == 'Netscape')

var browserId = 1;
else if (browserName == 'Microsof') // just first 8 letters...

browserId=2;
else

browserId = 0;

// =-= //
// Function: getMyMap()
// Description: Get appropriate map object for IE or Netscape
// **Same concept as getThisMap() example on page 15)**
// Arguments: none
// Returns: map object
// =-= //
function getMyMap()
{

// Get appropriate MGMap object; type depends on browserId value
if (browserId == 1)

MyMap = top.main.document.embeds[0]; // Netscape map object
else if (browserId == 2)

MyMap = top.main.document.MyMap; // IE map object
else

MyMap = null; // none if other browser
70 | Chapter 3 Viewer API Examples

return MyMap; //return map object
}

// =-= //
// Function: Pan(direction)
// Description:pans in the specified direction
// Arguments:direction
// Return:nothing
// =-= //
function Pan(direction)
{
 // Get MGMap object
 var MyMap = getMyMap();

MyMap.setAutoRefresh(false);
 // Get Width or Height in meters
 var delta;

var scrollfactor = 1;
 scrollfactor = document.Selection.factor.value;
 scrollfactor = parseInt(scrollfactor);
 if (isNaN (scrollfactor) || (scrollfactor < 1)) {
 alert("Enter a positive number as the scrolling factor.");

}
 else

{
if (direction == 'Up' | direction == 'Down' | direction ==
'Left' | direction == 'Right' | direction == 'Ul' | direction
== 'Ur' | direction == 'Ld' | direction == 'Rd')

 delta = MyMap.getWidth("M");
 delta = (scrollfactor/10) * delta;
 // Compute center point of map in Mapping Coordinate System (MCS)
 var xyPt = MyMap.lonLatToMcs(MyMap.getLon(), MyMap.getLat());
 // Convert delta from Meters to MCS units.
 var MCStoMeters = MyMap.getMCSScaleFactor();
 delta = delta / MCStoMeters;
 // Adjust by width / height of the map
 if (direction == 'Left') {
 xyPt.setX(xyPt.getX() - delta)
 }
 if (direction == 'Right') {
 xyPt.setX(xyPt.getX() + delta)
 }
 if (direction == 'Up') {
 xyPt.setY(xyPt.getY() + delta)
 }
 if (direction == 'Ul') {
 xyPt.setX(xyPt.getX() - delta)
 xyPt.setY(xyPt.getY() + delta)
 }

Facility Management Application (continued)
Advanced Applications | 71

 if (direction == 'Ur') {
 xyPt.setX(xyPt.getX() + delta)
 xyPt.setY(xyPt.getY() + delta)

}
if (direction == 'Down') {

 xyPt.setY(xyPt.getY() - delta)
}
if (direction == 'Ld') {

 xyPt.setX(xyPt.getX() - delta)
 xyPt.setY(xyPt.getY() - delta)

}
if (direction == 'Rd') {

 xyPt.setX(xyPt.getX() + delta)
 xyPt.setY(xyPt.getY() - delta)

}
// Zoom to the new location
myScale = MyMap.getScale();
MyMap.zoomScale(xyPt.getY(), xyPt.getX(), myScale);
MyMap.setAutoRefresh(true);
MyMap.refresh();

} //ends panning
}
// =-= //
// Function: GoToOrig(lat, lon)
// Description:Zooms to the lat lon specified with a width of 400
ft// Arguments:lat, lon
// Returns: nothing
// =-= //
function GoToOrig(lat, lon){

var MyMap = getMyMap();
MyMap.zoomWidth(lat, lon, 400, "FT");

}

// =-= //
// Function: reportsDlg() +
// Description:shows the reports dialog for generating reports+
// Arguments:none +
// Return:none +
++
+++++++*/
function reportsDlg(){
 var MyMap = getMyMap();
 var MyMapSel = MyMap.getSelection();
 var MyMapLayer = MyMap.getMapLayer("Offices");

if ((MyMapSel.getNumObjects() < 1) || (MyMapLayer.isVisible() ==
false)){

alert("You must select an office first.");
}
else{

Facility Management Application (continued)
72 | Chapter 3 Viewer API Examples

MyMap.viewReportsDlg();
}

}

/*++
+++++++
+ Function: zoom(type) +
+ Description:general use of zoom functions+
+ Arguments:type string +
+ Return:null +
++
+++++++*/
function zoom(type)
{

var myMap = getMyMap();//get MGMap
if (myMap.isBusy() == false)
{

if (type == 'Scale')
myMap.zoomScaleDlg();

else
myMap.zoomWidthDlg();

}
else

alert("The Viewer is busy ... please\n try again in a few sec-
onds");
}

/*++
+++++++
+ Function: selMapObj() +
+ Description:select by object, uses the Select Map Objects dialog
+
+ Arguments:none +
+ Return:none +
++
+++++++*/
function selMapObj(){
 var MyMap = getMyMap();

MyMap.selectMapObjectsDlg();
}

/*++
+++++++
+ Function: selRadiusMode() +
+ Description:changes the selection mode to select by radius+
+ Arguments:none +
+ Return:none +
++
+++++++*/

Facility Management Application (continued)
Advanced Applications | 73

function selRadiusMode(){
 var MyMap = getMyMap();

MyMap.selectRadiusMode();
}

/*++
+++++++
+ Function: ObjSelChanged() +
+ Description:on change of selection, highlight room selected+
+ Arguments:none +
+ Return:none +
++
+++++++*/
function ObjSelChanged()
{

// Get MGMap object
 var MyMap = getMyMap();
 if (MyMap.isBusy() == false){

 var selOptions = document.Selection.roomnum.options;
var MyCollection = MyMap.createObject("MGCollection");
var MyMapSel = MyMap.getSelection();
var MyMapLayer = MyMap.getMapLayer("Offices");
// For each item selected in the list box, get the corresponding
// object from the map. Keep track of them in a vector
for (var i=0; i < selOptions.length; i++) {

if (selOptions[i].selected){
 var MyObj = MyMapLayer.getMapObject(selOptions[i].val-

ue);
 if (MyObj != null) {
 MyCollection.add(MyObj);

 }
 }
 }
 MyMapSel.clear();
 if (MyCollection.size() > 0){
 MyMapSel.addObjectsEx(MyCollection, false);
 }

var zoomCheck = document.Selection.ZoomOption.checked;
if (zoomCheck == true){

MyMap.zoomSelected();
}

}
}

/*++
+++++++
+ Function: showOccupancy() +
+ Description:on change of selection, show occupancy type+

Facility Management Application (continued)
74 | Chapter 3 Viewer API Examples

+ Arguments:none +
+ Return:none +
++
+++++++*/
function showOccupancy()
{

// Get MGMap object
 var MyMap = getMyMap();
 if (MyMap.isBusy() == false){

 var selValue = document.Selection.Status.options;
 for (var i=0; i < selValue.length; i++) {
 if (selValue[i].selected){
 var temp = selValue[i].value;
 }
 }

if (temp == 'showAll'){
var whereClause = "Space_Status is not null";

}
else{

var whereClause = "Space_Status='"+temp+"'";
}

 var MyMapLayer = MyMap.getMapLayer("Offices");
MyMapLayer.setSQLWhere(whereClause);
MyMap.refresh();

}
}

/*++
+++++++
+ FunctionresetForm() +
+ Description:resets the values in the form to the default values+
+ Arguments:none +
+ Return:none +
++
++++++*/
function resetForm(){

document.Selection.reset();
}

/*++
+++++++
+ FunctionopenSearchWind() +
+ Description:used to launch the search popup window+
+ Arguments:none +
+ Return:none +
++
++++++*/
function openSearchWind(){

Facility Management Application (continued)
Advanced Applications | 75

var FirstName = document.Selection.FirstName.value;
var LastName = document.Selection.LastName.value;
var RoomSelected;
var Count = 0;

 var selOptions = document.Selection.roomnum.options;
 for (var i=0; i < selOptions.length; i++) {
 if (selOptions[i].selected){

RoomSelected = selOptions[i].value
Count = Count + 1;

 }
 }

if ((FirstName.length == 0) && (LastName.length == 0) && (Count <
1)){

alert("Must enter a value for the first name or last name field.
\nOr, select a room before continuing.");

}
else{

SearchWindow = window.open("Search.cfm?FirstName="+First-
Name+"&LastName="+LastName+"&Room="+RoomSelected, "SearchWindow",
"toolbar=no,width=350,height=205,directories=no,status=no,scroll-
bars=no,resize=yes,menubar=no")

}
}

//-->
</SCRIPT>
</HEAD>

Facility Management Application (continued)
76 | Chapter 3 Viewer API Examples

In This Chapter

� Autodesk MapGu
reports

� Introducing
ColdFusion and A

� Creating report sc
with ColdFusion

� Creating report sc
with ASP
4

Using Reports to Query and
Update Data Sources
77

ide

SP

ripts

ripts
Your Autodesk MapGuide applications can include

reports that enable users to display and modify

database information associated with a map. This

chapter explains how Autodesk MapGuide gener-

ates reports and shows you how to create report

scripts using two popular server-side technologies,

Allaire ColdFusion and Microsoft Active Server

Pages.

Autodesk MapGuide Reports

When creating a map, you can add reports to the map. Typically, a report is
an HTML page that displays information about the selected map features on
the layer. However, because the power behind the report is a report script that
you create using a third-party tool like ColdFusion, Active Server Pages (ASP),
Java, LiveWire™, or dbWeb™, the report can do much more than display
information—it can perform any number of tasks that you code into the
script. For example, in this chapter you will see a sample application that
allows the user to click a point on the map and then updates the source data-
base with that point, so that any map layer that uses that database as its data
source will now display that point on the map. This chapter focuses on these
types of advanced applications performed by the report script.

How Reports are Generated

Autodesk MapGuide’s role in generating reports is to construct a URL dynam-
ically and send it as an HTTP request to a web server. This URL is composed
of a path to an application on the web server along with a set of parameters.
The server, in turn, will process the request and send or “post” the results.

Autodesk MapGuide can generate two distinct types of requests by passing
unique parameters along with the URL to the server. The first type of URL
request passes key values of the selected map features. These key values are
the “keys” that are defined in the data source. The second type of URL
request passes a point feature and its location.

Specifying the Report Script

The report script contains the necessary code to connect to the appropriate
database, build the query, and display the results. For example, the script
might be a ColdFusion template file (CFM) or Active Server Page (ASP) that
resides on the web server. The Reports tab in the Map Window Properties
dialog box in Autodesk MapGuide Author allows you to specify the report
script, as well as set other properties of the report. In the URL text box, you
specify the name and path of the script to use to pass the report information
to your reporting engine.
78 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
See Cha
Autodesk
Viewer A
informat
Viewer A
The Request

Autodesk MapGuide Author will use the report settings defined in the Map
Window Properties dialog box to construct the URL that is sent to the server.
For example, after all of the settings are specified, the URL might look like
this:

http://www.myserver.com/reports/
report.cfm&OBJ_TYPE=landuse&OBJ_KEYS='01235639','01235640','01235641'

This URL is a request to launch a ColdFusion template called report.cfm. The
template file and the two parameters OBJ_TYPE and OBJ_KEYS are passed to
the ColdFusion engine by the web server. The parameters will serve as argu-
ments or variables that can be used by the ColdFusion template file.

Note By default, Autodesk MapGuide Author sends map feature key values to
the URL as characters. However, if you specify another data type for the key col-
umn, Autodesk MapGuide will send the keys as that type instead. You set the key
column type by selecting it from the Type list box on the Data Sources tab of the
Map Layer Properties dialog box.

Launching the Report

There are several ways to launch the View Reports dialog box from Autodesk
MapGuide Viewer. You can right-click the map and choose View � Reports,
or you can click the Report button on the Autodesk MapGuide Viewer
toolbar. Both methods will display a dialog box that shows a list of available
reports defined for the map. Using the Autodesk MapGuide Viewer API, you
can also launch reports programmatically; you call the View Reports dialog
box using viewReportsDlg and launch the report directly using viewReport.

Introducing ColdFusion and ASP

The examples in this chapter were created using two report engines, Allaire
ColdFusion and Microsoft Active Server Pages (ASP). ColdFusion and ASP are
application servers. An application server is an application that works with the
web server to provide additional web functionality. Like the web server, it
runs in the background as a Windows NT service.

Both products work essentially the same way. You build web pages that
include special tags, and when a web browser requests one of those pages, the
application server interprets the tags, replaces them with the results of the
specified calculations or database queries, and then sends the completed
page to the web server. The web server then sends the page to the browser to

re info...
pter 2 and the
 MapGuide
PI Help for more
ion on the
PI.
Introducing ColdFusion and ASP | 79

For mo
Refer to
MapGuid
Guide fo
about in
report e

For mo
Refer to
mentatio
shipped
copy of
or to the
docume
www.alla
be displayed. Because the processing is done by the server, the end-user sees
only the final HTML output, not the code used to create that output. (Of
course, the HTML can include anything—even client-side scripting code!)
Although end-users can view the source of your HTML output, they never see
the server-side scripting code used to create that output.

This book uses ColdFusion and ASP for its examples because developing with
these products is easier than writing your own perl scripts or Visual Basic/C++
DLLs, and because these products are by far the most common platforms for
Autodesk MapGuide server-side application development. Both are free to
Autodesk MapGuide developers: ColdFusion is included on the Autodesk
MapGuide Server CD, and ASP is offered by Microsoft at no cost as part of
Windows NT Server Option Pack 4. Although the examples are specific to
ColdFusion and ASP, the concepts are general, applying to CGI and to other
application servers as well.

ColdFusion supports both Microsoft Internet Information Server (IIS) and
the Netscape web servers. ASP supports IIS only, meaning that it, and your
map applications, can only be run on the Microsoft web server. Keep in
mind, though, that this does not affect your users; the HTML you produce
can be read by any web browser. The limitation exists only for the web server.

Creating Report Scripts with ColdFusion

A ColdFusion script, or template, is essentially a standard HTML file that
includes extra tags written in a server-side markup language called CFML
(ColdFusion Markup Language). CFML tags begin with the letters CF, and are
used to tell ColdFusion to process either a calculation or a query. The tags can
also tell ColdFusion which data source you want to use and how you want to
manipulate or display the information in that data source. A template uses
the file extension .cfm to identify itself and let the web server know that it
should be passed to the ColdFusion service for processing.

ColdFusion was designed to provide database connectivity to your web
pages. It is a full-fledged development environment that includes functions,
operators, variables, control structures, and more. You can use ColdFusion to
create powerful and complex web applications. But simple applications have
their uses too, as we’ll see later in this chapter. Despite its power, ColdFusion
is fairly easy to learn; if you’re familiar with HTML coding, you’ll get up to
speed quickly.

The following examples show how to create report scripts with ColdFusion.
We recommend that you read them in order.

re info...
the Autodesk
e User’s

r information
stalling a
ngine.

re info...
the docu-
n that

 with your
ColdFusion,
 online
ntation at:
ire.com
80 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
Refer to
MapGui
help for
mation o
Note For ASP versions of the same examples, see “Creating Report Scripts with
ASP” on page 102.

Example—Listing File Contents with ColdFusion

This example shows a simple template that lists the contents of a map-
resource database. Note that this template accesses the database directly,
instead of using Autodesk MapGuide’s reporting feature. Later, we’ll see how
Autodesk MapGuide fits into the picture.

Let’s say you have an MWF file that points to a database containing parcel
information such as lot number, street address, owner’s name, and so on. If
you want to list the contents of that database at the bottom of an HTML page
displaying the map, you would first rename the HTML file with a .cfm exten-
sion and place it in a directory with script or execute permissions. Then you
would add <CFQUERY> and <CFOUTPUT> statements to the file. The <CFQUERY>
tag tells ColdFusion which database to use and which records to select from
that database. You can place <CFQUERY> anywhere in the page, as long as it
appears before <CFOUTPUT>. The <CFOUTPUT> tag controls how the database
output will be displayed on the page. You place this tag within <BODY>, at the
location you want the database output to appear.

The next sections describe each of these tasks in more detail.

Setting up the Query

First we’ll build the <CFQUERY> statement. If your map links to a table called
Parcel_Data through a data source Assessor, <CFQUERY> will look like this:

<CFQUERY NAME="get_parcel_info" DATASOURCE="Assessor">
SELECT * FROM Parcel_Data

</CFQUERY>

The NAME attribute specifies the name of the ColdFusion query. This name
can be anything you want, as long as it matches the name specified later in
<CFOUTPUT>. The DATASOURCE attribute is the OLE DB data source name
(DSN), in this case “Assessor”. Between the <CFQUERY> beginning and end tags
is a SQL statement specifying which part of the table you want to look at (this
selection is known as a recordset.) In this case, we’re selecting everything (“*”)
from the Parcel_Data table.

re info...
the Autodesk
de online
more infor-
n OLE DB.
Creating Report Scripts with ColdFusion | 81

Controlling the Output

Now we’ll assemble the <CFOUTPUT> statement. If you want to display the
parcel number, owner’s name, and year built, your tag will look like this:

<CFOUTPUT QUERY="get_parcel_info">
<P>Parcel Number: #APN#

<P>Owner Name: #Owner_Name#

<P>Year Built: #Year_Built#</P>

</CFOUTPUT>

The QUERY attribute tells ColdFusion which recordset you’d like to display;
this attribute matches the NAME you specified in <CFQUERY>. The names
within pound signs (#APN#, #Owner_Name#, #Year_Built#) are ColdFusion
variables that match column names in the database table (for example,
#APN# refers to the APN column). Everything else is straight HTML.

Seeing the Results

Now we’re ready to load the page in the browser.

However, because this particular table has more than 5,000 records, selecting
everything in it might not be such a good idea. Let’s limit the output by
showing only houses built in 1963. To do so, go back to <CFQUERY> and
change the SQL statement to the following:

SELECT * FROM Parcel_Data WHERE Year_Built = '1963'

That’s still a lot of records, but probably not enough to generate angry
e-mail messages from users. Here’s a listing of the complete CFM file called
parcel_report.cfm, followed by an illustration of the page as it appears in a
browser:

<HTML>
<HEAD>
<!-- ColdFusion query -->
<CFQUERY NAME="get_parcel_info" DATASOURCE="Assessor">
SELECT * FROM Parcel_Data WHERE Year_Built = '1963'
</CFQUERY>
<TITLE>ColdFusion Example</TITLE>
</HEAD>
<BODY>
<H1>Listing File Contents with ColdFusion</H1>
<!-- ColdFusion output tags -->
<CFOUTPUT QUERY="get_parcel_info">
<P>Parcel Number: #APN#

Owner: #Owner_Name#

Year Built: #Year_Built#</P>
</CFOUTPUT>
</BODY>
</HTML>
82 | Chapter 4 Using Reports to Query and Update Data Sources

The HTML output

In this example, the database happens to be an Autodesk MapGuide resource,
but it could really be anything: an Access database listing employees and
their phone numbers, an Excel spreadsheet showing your checking account
balance, or anything else you might store in a table. In most cases, you’ll
want to access your database resources through Autodesk MapGuide Viewer,
by linking them to features and layers in the map. The next two examples
show you how to do this.

Example—Querying and Displaying Data via the Map

Now that we’ve seen how ColdFusion works, let’s use it with Autodesk
MapGuide. This example uses StarterApp.mwf from the Autodesk MapGuide
web site. Note that the full set of Starter Application files is available for
download at http://www.autodesk.com/mapguidedemo.

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying report information in Autodesk MapGuide Author.
Our report will be called “Parcel Data (CF)”, and it will access a CFM file
whose URL is http://www.yourserver.com/parcel_report.cfm. We want the CFM
file to display information about user-selected features on a layer called
Creating Report Scripts with ColdFusion | 83

“Assessment.” The Map Window Properties dialog box shown next reflects
our selection.

Dialog box specifications for ‘Parcel Data (CF)’

Here are descriptions of how we used the options on the Reports tab:

Report Specifies the report name as it appears in the Autodesk
MapGuide Viewer. Our report is “Parcel Data (CF).”

URL Specifies the name and location of the report script, in this
case parcel_report.cfm on www.yourserver.com.

Data We left this field blank but could have used it to pass addi-
tional URL parameters to parcel_report.cfm. For example, if
our ColdFusion file contained definitions for more than
one query, we might have passed a parameter telling the
file which of the queries to run, such as report = 'A'.

Type Specifies whether the report is based on the keys of
selected features (as this one is), or on the coordinates of
a point the user clicks.

For Map Layers Specifies the layer or layers you want the report to be
linked to. Our report operates only on features on the
Assessment layer.

Parameter Specifies the name of the URL parameter used to send the
feature key (or keys) to parcel_report.cfm. The name can be
anything you want, as long as it matches the name you
specified in parcel_report.cfm. We’ve selected the Autodesk
MapGuide Author default, “OBJ_KEYS”.
84 | Chapter 4 Using Reports to Query and Update Data Sources

When a user selects one or more features from the Assessment layer and runs
the Parcel Data (CF) report, Autodesk MapGuide constructs a URL that
invokes parcel_report.cfm and tells it to generate a report on the selected
features, which are identified by their OBJ_KEY values. If the user selected a
single feature whose key was “941-0176-003-00”, the URL would look like
this:

http://www.yourserver.com/parcel_report.cfm?OBJ_KEYS='941-0176-003-00'

If the user selected multiple features, the URL might look like this:

http://www.yourserver.com/
parcel_report.cfm?OBJ_KEYS='941-0176-003-00','941-0176-006-00','941-0176-004-00'

Note that OBJ_KEYS is represented as a standard URL parameter. To
ColdFusion, this parameter is no different from one submitted by an HTML
form element. As we’ll see in the next section, ColdFusion processes it
accordingly.

Creating the Report Script

Now let’s create the ColdFusion template that will process the Autodesk
MapGuide report. The following listing is for the parcel_report.cfm file:

<HTML>
<HEAD><TITLE>ColdFusion Report Data</TITLE></HEAD>
<BODY>
ColdFusion-- ColdFusion query -->
<CFQUERY DATASOURCE="assessor" NAME="get_parcel_info">

SELECT * FROM Parcel_Data WHERE APN IN (#PreserveSingleQuotes(OBJ_KEYS)#)
</CFQUERY>
<H1>ColdFusion Report Data</H1>
<!-- ColdFusion the output tags -->
<CFOUTPUT QUERY="get_parcel_info">
<P>Parcel Number: #apn#

Owner: #owner#

Year Built: #yearblt#</P>
</CFOUTPUT>
</BODY>
</HTML>

Note that CFML tags are almost identical to those in the first example
(“Listing File Contents”). The only change is to the <CFQUERY> tag, which
uses a different SQL statement:

SELECT * FROM Parcel_Data WHERE APN IN (#PreserveSingleQuotes(OBJ_KEYS)#)

As with the previous example, the statement is selecting records from the
Parcel_Data DSN. The difference is that the WHERE clause now points to a
ColdFusion variable, #PreserveSingleQuotes(OBJ_KEYS)#. OBJ_KEYS refers to
the parameter of the same name we specified in Autodesk MapGuide Author.
As its name suggests, the PreserveSingleQuotes() function tells ColdFusion to
Creating Report Scripts with ColdFusion | 85

For mo
see “Dis
Map in a
Page” in
MapGuid
Help.
keep the single-quotes surrounding each feature key, instead of removing
them automatically as it normally would.

This statement is basically saying “in Parcel_Data, select all records whose
APN field matches OBJ_KEYS.” Put more simply, it’s saying “select the records
that correspond to the selected features on the map.” If OBJ_KEYS contains
multiple keys, ColdFusion outputs the feature data associated with each key.

Creating an HTML Page to Display the Map

The last step is to create an HTML page to display our map. The following
listing is for a file called parcel_map.htm.

<HTML>
<HEAD><TITLE>ColdFusion Example</TITLE></HEAD>
<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ColdFusion to access an Autodesk
MapGuide Report</P>
<!-- embedded map -->
<OBJECT ID="myMap" WIDTH=600 HEIGHT=250

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"

VALUE="http://www.yourserver.com/maps/StarterApp.mwf>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf

NAME="myMap" WIDTH=600 HEIGHT=250>
</OBJECT>
</BODY>
</HTML>

Seeing the Results

Now we’re ready to view parcel_map.htm in our web browser. Users can
generate a report for one or more map features by selecting the features,
right-clicking and choosing View � Reports from the popup menu, and then
selecting Parcel Data (CF).

re info...
playing a
n HTML

 the Autodesk
e Viewer API
86 | Chapter 4 Using Reports to Query and Update Data Sources

Displaying the report in a new window

That looks pretty good, but we can still do a few things to improve the
interface.
Creating Report Scripts with ColdFusion | 87

For mo
see “Vie
Paramet
Autodesk
Viewer A
Redirecting Report Output

To avoid cluttering the desktop, let’s generate the report in the current
browser window, instead of displaying it in a new instance of the browser. Go
back to parcel_map.htm and modify the embedded map code:

<OBJECT ID="myMap" width=600 height=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">

<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self>

<EMBED src="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self
NAME="myMap"WIDTH=600 HEIGHT=250>

</OBJECT>

Notice that we’ve added a Viewer URL parameter to the map reference:

http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self

ReportTarget specifies the window or frame in which you’d like your report
to display. By specifying _self, we redirect the report output so that it displays
in the current window.

Displaying the report in the current window

re info...
wer URL
ers” in the
 MapGuide
PI Help.
88 | Chapter 4 Using Reports to Query and Update Data Sources

At first glance this appears to be a good solution, but it has some problems.
Users might get confused about where they are. Worse yet, when they click
the Back button, they will find that the map has been reloaded and the loca-
tion they zoomed to has been lost. A better approach is to display the map
and the report in two frames of the same window. Let’s do that now.

Start by creating a standard HTML file that defines a frameset. The frameset
should display the map on the left and a blank page on the right:

<HTML>
<HEAD>

<TITLE>ColdFusion Report Data</TITLE>
</HEAD>
<!-- frames -->
<FRAMESET COLS="65%,*">

<FRAME NAME="Left" SRC="parcel_map.htm" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">

<FRAME NAME="Right" SRC="about:blank" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">

</FRAMESET>
</HTML>

Notice that we’ve assigned the names Left and Right to the frames. The source
for Left is parcel_map.htm, the file containing our embedded map. The source
for Right is about:blank, a standard browser function whose purpose is to
display a blank window or frame.

Now that we have the frameset, let’s go back to parcel_map.htm and change
the ReportTarget parameter to Right, the name we assigned to our right-hand
frame:

<OBJECT ID="myMap" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://www.yourserver.com/maps/Starter-
App.mwf?ReportTarget=Right>

<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf?Re-
portTarget=RightNAME="myMap" WIDTH=600 HEIGHT=250>

</OBJECT>
Creating Report Scripts with ColdFusion | 89

Let’s see how it looks:

Displaying the report in a frame

Much better! Now your users can invoke as many reports as they want,
without losing their place in the map or calling a new instance of the
browser.

Adding a Button with the Viewer API

Now we’ll make one last change to add some polish. An Autodesk MapGuide
report is generated by right-clicking the map and then choosing View �
Reports from the popup menu. This interface is not immediately apparent to
users, so we’ll make it easier for them by creating a “Parcel Report” button
that will display the report.
90 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
See Cha
Autodesk
Viewer A
informat
Viewer A
First we’ll add the following <SCRIPT> tag to parcel_map.htm:

<SCRIPT>
function getThisMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.myMap;

else
return parent.Left.window.myMap;

}

function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getThisMap().viewReport('Parcel Data (CF)');

}
</SCRIPT>

The <SCRIPT> tag holds two JavaScript functions. The first function is our old
friend getThisMap(), which we’re using to smooth out some differences
between Netscape and Internet Explorer (for more information, see
“Accessing the Map Programmatically” on page 15). The second function,
runReport(), displays our Autodesk MapGuide report.

The runReport() function consists of two statements. The first statement
writes a line of text to the right-hand frame of our report application:

parent.Right.document.write("<P>Select one or more parcels first.</P>");

You’ll notice that the text instructs users to select one or more map features.
This instruction displays every time runReport() is invoked, regardless of
whether the user has selected features. If features are selected, the instruc-
tions are replaced in the frame by the contents of the newly generated report;
otherwise the instructions remain in the frame to provide feedback.

Note “parent” refers to the top-level frame and “Right” is the name we specified
for our right-hand frame in parcel_frames.htm. Refer to third-party JavaScript doc-
umentation for more information on writing to frames and windows.

The second statement uses viewReport(), a Viewer API function, to run our
report:

getThisMap().viewReport('Parcel Data (CF)');

The statement starts out by calling getThisMap(), which returns the map
object in the web page. The map object is then passed to viewReport(), which
directs Autodesk MapGuide to display a specified report, in this case “Parcel
Data (CF)”.

re info...
pter 2 and the
 MapGuide
PI Help for more
ion on the
PI.
Creating Report Scripts with ColdFusion | 91

Now that our function is defined, we need a way to call it. Let’s add a <FORM>
element to parcel_map.htm:

<FORM>
<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>

</FORM>

This is a standard HTML form consisting of a single button named “Parcel
Report”. By setting the value of ONCLICK to "runReport()", we specify that the
function should be invoked each time a user clicks the button.

Note A JavaScript function must appear above the JavaScript code that calls it.
This keeps users from trying to call a function before it has been parsed by the
browser. JavaScript functions are typically defined in a single <SCRIPT> tag in the
<HEAD> section of the HTML file.

Now let’s look at the final text of parcel_map.htm, as well as the finished appli-
cation. The illustration shows the results if no map features have been
selected.

<HTML>
<HEAD>

<TITLE>ColdFusion Example</TITLE>
<!-- JavaScript functions -->
<SCRIPT>

// function #1
function getThisMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.myMap;

else
return parent.Left.window.myMap;

}
// function #2
function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getThisMap().viewReport('Parcel Data (CF)');

}
</SCRIPT>

</HEAD>

<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ColdFusion to access an Autodesk
MapGuide Report</P>
92 | Chapter 4 Using Reports to Query and Update Data Sources

<!-- embedded map -->
<OBJECT ID="myMap" WIDTH=600 HEIGHT=250

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://www.yourserver.com/maps/Starter-

App.mwf?ReportTarget=Right>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf?Re-

portTarget=Right NAME="myMap" WIDTH=600 HEIGHT=250>
</OBJECT>
<!-- Parcel Report button -->
<FORM>

<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>
</FORM>
</BODY>
</HTML>

The finished product

The next example shows you how to modify a database via the map.
Creating Report Scripts with ColdFusion | 93

For mo
For infor
adding f
SDF files
database
Chapter
Example—Modifying a Database via the Map

This example shows how to create an application that lets users add points
to a map from their browsers. The points are stored in a database on the
server and are visible to anyone else viewing the map. The example is of a
hypothetical “Incident Log” application that will be used to track crimes and
consists of the following components:

� Three ColdFusion files, getpoint.cfm, showform.cfm, and insert.cfm. As their
names suggest, the files receive point coordinates from Autodesk
MapGuide, display a form that takes additional user input, and add the
point data to a database on the server.

� An Autodesk MapGuide report (and later, a custom menu item) that passes
digitized point coordinates to getpoint.cfm.

� An HTML page to host the map (except for minor text changes, this page
will be identical to parcel_map.htm from the previous example).

� An “Incidents” database table on the server and a new map layer (also
called “Incidents”) to display the contents of that table.

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying the report information in Autodesk MapGuide
Author. Our report will be called “Incidents (CF)”, and it will pass the lat/lon
coordinates of a user-specified point to a CFM file whose URL is
http://www.yourserver.com/cf/getpoint.cfm:

Dialog box specifications for “Incidents (CF)” report

re info...
mation on
eatures to
 instead of to
s, see

 5.
94 | Chapter 4 Using Reports to Query and Update Data Sources

Here are descriptions of how we used the options on the Reports tab:

Report Specifies the name of the report as it appears in the
Autodesk MapGuide Viewer. Our report is named
“Incidents (CF)”.

URL Specifies the name and location of the report script, in this
case getpoint.cfm on www.yourserver.com.

Data We left this field blank but could have used it to pass addi-
tional URL parameters to getpoint.cfm.

Type Specifies whether the report is based on the keys of
selected features, or on the coordinates of a point the user
clicks. We chose the second option, “Digitize a point and
send point.”

Prompt Specifies the text to be displayed in a message box
prompting users to specify a point. If this field is left
blank, no message box is displayed.

When a user runs the Incidents (CF) report, Autodesk MapGuide prompts the
user to specify a point. Then it invokes getpoint.cfm, passing the point’s
lat/lon coordinates as URL parameters. For example, if the user specified a
point whose coordinate values were -121.943,37.721, the URL would look
like this:

http://www.yourserver.com/getpoint.cfm?LAT=-121.943&LON=37.721

Creating the Report Scripts

Next we’ll create the three CFM files: getpoint.cfm, showform.cfm, and
insert.cfm.

The first file, getpoint.cfm, creates a small browser window and then calls a
second file, showform.cfm, passing along the coordinate values it received
from Autodesk MapGuide:

<SCRIPT LANGUAGE = "JavaScript">
window.close();
var loc = "showform.cfm?LAT=" + <CFOUTPUT>#LAT#</CFOUTPUT> +

"&LON=" + <CFOUTPUT>#LON#</CFOUTPUT>;
win = window.open(loc,"ShowFormWin",

"width=300,height=170,dependent=yes,resizable=yes");
win.focus();
</SCRIPT>

Note that getpoint.cfm consists of a single <SCRIPT> element containing a block
of JavaScript code; because the file doesn’t display any text, no other HTML
tags are needed. Let’s look at the code line by line.
Creating Report Scripts with ColdFusion | 95

When getpoint.cfm is first called it uses a default browser window similar to
the one we saw in the previous example. The first line of code closes that
window:

window.close();

Note Because the browser parses the entire <SCRIPT> block before running the
first line of code, we can safely close the window, knowing our script will continue
to run. Be aware, however, that this strategy will get you into trouble if your file
contains function calls or other multiple <SCRIPT> blocks. See your JavaScript doc-
umentation for more information.

The next line constructs a URL and assigns it to a variable called “loc”:

var loc = "showform.cfm?LAT=" + <CFOUTPUT>#LAT#</CFOUTPUT> +
"&LON=" + <CFOUTPUT>#LON#</CFOUTPUT>;

Note that the line is a mix of both JavaScript code and ColdFusion
<CFOUTPUT> tags. The <CFOUTPUT> tags contain two ColdFusion variables
named #LAT# and #LON#. These variables are replaced on the server by the
lat/lon values that Autodesk MapGuide provided, meaning the browser
receives a line similar to the following:

var loc = "showform.cfm?LAT=" + "-121.943" + "&LON=" + "37.721";

The effect of this line is to create a variable called “loc” and to assign it the
value showform.cfm?LAT=-121.943&LON=37.721.

The next line creates a new browser window, using the loc variable to supply
the URL:

win = window.open(loc,"ShowFormWin",
"width=300,height=170,dependent=yes,resizable=yes");

The last line shifts browser focus to the new window we just created:

win.focus();

Now, let’s look at the second file, showform.cfm:

<HTML>
<HEAD>

<TITLE>Attribute Input</TITLE>
</HEAD>
<BODY BGCOLOR="SILVER">
96 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
Refer to
book on
informat
using fo
<CFOUTPUT>
<FORM Name=myForm METHOD="POST" ACTION="insert.cfm">

<INPUT TYPE="hidden" NAME="rpt_lat" VALUE="#LAT#">
<INPUT TYPE="hidden" NAME="rpt_lon" VALUE="#LON#">
Incident Report:

<INPUT TYPE="text" MAXLENGTH="30" NAME="rpt_info" SIZE="33">

Reported By:

<INPUT TYPE="text" MAXLENGTH="30" NAME="rpt_by" SIZE="33">

<CENTER>
<INPUT TYPE="submit" NAME="Submit" VALUE="OK">
<INPUT TYPE="button" NAME="CancelButton" VALUE="Cancel"

onClick="window.close()">
</CENTER>

</FORM>
</CFOUTPUT>
</BODY>
</HTML>

The showform.cfm file does indeed show a form, which is used to enter a
description of the crime (euphemistically referred to as an “incident”).

The bulk of the file is a standard HTML form. The form has been placed
within <CFOUTPUT> tags to give us access to the ColdFusion variables #LAT#
and #LON#. Once again, these variables are replaced on the server by the
user-specified lat/lon coordinates.

In short, an HTML form collects data from the user and sends that data to a
program in the form of a URL. The form in showform.cfm calls yet another
CFM file, insert.cfm, passing it the following parameters:

� The latitude value represented by the ColdFusion variable #LAT#; this
value is passed as the form parameter “rpt_lat”.

� The longitude value represented by the ColdFusion variable #LON#; this
value is passed as the form parameter “rpt_lon”.

� An incident description entered in the form by a user; this description is
passed as the form parameter “rpt_info”.

� A name entered in the form by a user; this name is passed as the form
parameter “rpt_by”.

The following illustration shows the showform.cfm form, as displayed in the
window created by getpoint.cfm.

re info...
a third-party
 HTML for
ion about
rms.
Creating Report Scripts with ColdFusion | 97

Entering data into showform.cfm

Specifying the lat/lon points -121.943,37.721 by clicking the map and filling
out the form as shown in the illustration will result in the following URL
being constructed and passed to insert.cfm:

insert.cfm?rpt_lat=-121.943&rpt_lon=37.721&rpt_info=A+hat+was+stolen&rpt_by=J+Bigby

Now, let’s see how insert.cfm handles the URL.

<CFQUERY NAME="InsertQuery" DATASOURCE="assessor">
INSERT into Incidents (lat, lon, description, reported_by)
values('#FORM.rpt_lat#','#FORM.rpt_lon#','#FORM.rpt_info#','#FORM.rpt_by#')
</CFQUERY>
<SCRIPT LANGUAGE = "JavaScript">
alert("Point added successfully! Reload the map to see your changes.");
window.close();
</SCRIPT>

The file consists of <CFQUERY> and <SCRIPT> tags. Like getpoint.cfm, the file
contains no displayable text. The <CFQUERY> tag defines a query named
“InsertQuery” using the “assessor” DSN from the previous examples. Note
that the query name is defined but not used again in the file.
98 | Chapter 4 Using Reports to Query and Update Data Sources

The <CFQUERY> element contains a single SQL statement, which is used to add
the form data to the map-resource database:

INSERT into Incidents (lat, lon, description, reported_by)
values('#FORM.rpt_lat#','#FORM.rpt_lon#','#FORM.rpt_info#','#FORM.rpt_by#')

The SQL INSERT statement adds data to a database resource, in this case the
Incidents table in the assessor DSN. The parenthetical values “lat”, “lon”,
“description”, and “reported_by” are the names of the database fields we want
to supply values for. The parenthetical values #FORM.rpt_lat#,
#FORM.rpt_lon#, #FORM.rpt_info#, and #FORM.rpt_by# represent the infor-
mation we want to place into those fields, in this case the URL parameters
passed form showform.cfm.

Now let’s look at the contents of the <SCRIPT> element:

alert("Point added successfully! Reload the map to see your changes.");
window.close();

The first line displays an alert telling users to reload the map to see their
changes. The second line closes the form window, leaving only the original
map window.

Creating an HTML Page to Display the Map

The last step is to create an HTML page to display our map. We’ll use the
parcel_map.htm file from the previous example, modifying the <H1> and the
short paragraph of descriptive text, but leaving the rest of the file unchanged:

<HTML>
<HEAD>

<TITLE>ColdFusion Example</TITLE>
</HEAD>
<BODY>
<!-- Only the next two lines are different -->
<H1>Modifying a Database via the Map</H1>
<P>This example uses ColdFusion to update a database map
resource</P>
<!-- embedded map -->
<OBJECT ID="myMap" WIDTH=600 HEIGHT=250

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://www.yourserver.com/maps/Starter-

App.mwf?ReportTarget=Right>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf?Re-

portTarget=Right NAME="myMap" WIDTH=600 HEIGHT=250>
</OBJECT>
</BODY>
</HTML>
Creating Report Scripts with ColdFusion | 99

Creating a Custom Menu Item

As we designed it, our report has a few problems. The first is that it requires
too many mouse clicks: users have to select View � Reports from the popup
menu, then they have to select Incidents (CF) from the list, then they have to
clear the alert box that tells them to select a point, then they have to digitize
the point. The other problem is that because our report isn’t associated with
a layer, users can add items to the Incidents map layer even when that layer
isn’t visible.

We can solve both of these problems by creating a custom menu item that
takes the place of the report. We do so by selecting the following options on
the Popup Menu tab of the Map Window Properties dialog box:

Dialog box specifications for ‘Incident Log’ menu item

Here are descriptions of how we used the options on the Popup Menu tab:

New Menu Item Creates a new popup menu item below the item selected
in the Popup Menu list.

Name Specifies the name of the menu item as it will appear in
the Viewer. Our menu item is named “Incident Log.”

Action Specifies the task to be performed by the menu item. We
selected “GetPointAndSendToURL” from the drop-down
list.

Arguments Specifies arguments to use with the selected action, in this
case the path to getpoint.cfm and the name of the layer we
want to add data to.
100 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
Refer to
MapGuid
Help.
When users select Incident Log from the popup menu, they will immediately
be able to enter a point, thus bypassing several mouse clicks. Also, if the Inci-
dents layer is not visible because the map is zoomed outside of the layer’s
display range, the Incidents Log menu item will be unavailable.

Accessing Your Application with the Viewer API

Because the Incident Log application runs in a separate instance of the
browser, it does not have programmatic access to the map window. This
means the application cannot refresh the map automatically. (That’s why we
have a JavaScript alert() box telling the user to reload the map manually.)

To solve this problem and to avoid having the user need to reload the map
manually, use the Viewer API to access the Incident Log application. Instead
of creating a report or custom menu item, add a button or other interface
element to the HTML page hosting the map (or to a frame or child window
with access to that page). The button should invoke a JavaScript function
that does the following:

� Uses the digitizePoint() method to get the coordinates of a user-specified
point.

� Invokes getpoint.cfm, passing the point coordinates as URL parameters.

� Refreshes the map after getpoint.cfm, showform.cfm, and insert.cfm have
completed their work.

This section described how to use ColdFusion to work with report scripts.
The next section covers similar topics using ASP instead of ColdFusion.

re info...
the Autodesk
e Viewer API
Creating Report Scripts with ColdFusion | 101

Creating Report Scripts with ASP

ASP files are similar to ColdFusion templates: both are based on HTML, and
both use a special extension to identify the file as one that requires special
processing (not surprisingly, ASP uses .asp). Instead of tags, ASP files include
scripts written in VBScript, a lightweight Visual Basic-like scripting language,
or in JScript, Microsoft’s version of JavaScript. VBScript is the more
commonly used of the two languages.

While ColdFusion is designed specifically for web-database connectivity, ASP
is a more general development environment. On one hand, this means you
can do more with ASP than with ColdFusion. On the other hand, it takes
longer to learn to do anything at all with ASP. Both products are excellent,
but if you’re a non-programmer, you’ll probably be happier with ColdFusion.

Much of ASP’s functionality is provided by objects and components. Objects
and components are ActiveX DLLs, similar to those you would use with
Microsoft Visual Basic. Objects are always available to VBScript; you do not
have to explicitly create them to use them in your code. Components exist
outside of ASP and must be created with ASP in order to be used. ASP also
provides access to several server events; the global.asa file lets you add code
for how those events should be handled.

Mostly, you will be working with the Server object, the Request object, and
the Database Access component. To get a good idea of how ASP works, skim
the descriptions below, and then look at the examples that follow.

Tip For more information on ASP, refer to the Microsoft Internet Information
Server online documentation and the Microsoft web site (www.microsoft.com).
ASP documentation is also available as part of the Microsoft Developer Network
(MSDN) Library.
102 | Chapter 4 Using Reports to Query and Update Data Sources

Summary of ASP Objects, Components, and
Events

Note You can also create your own custom ActiveX components for ASP.

Summary of ASP objects

Object Description

Application Lets you create variables available to all users of an
application.

Session Lets you create variables that are available to one user at
a time; session variables stay in memory as long as a
user continues the session.

Request Parses data submitted from the client to the server.

Response Manages content returned to a browser by ASP.

Server Provides a number of useful server methods, including
CreateObject(), which you’ll use to create a connection
to your database map resources.

Summary of ASP components

Component Description

Database Access Reads and writes to OLE DB data sources.

File Access Allows access to text files on your web site.

Browser Capabili-
ties

Identifies the browser currently accessing the site and provides
programmatic access to features the browser supports.

Ad Rotator Controls the rotation of banner ads in a site.

Content Linking Links separate web pages together so that users can scroll
through them as a single page.
Creating Report Scripts with ASP | 103

The following examples show how to create report scripts with ASP. We
recommend that you read them in order.

Note For ColdFusion versions of the same examples, see “Creating Report
Scripts with ColdFusion” on page 80.

Example—Listing File Contents with ASP

This example shows a simple server page that lists the contents of a map-
resource database. Note that this page accesses the database directly, instead
of using Autodesk MapGuide’s reporting feature. Later, we’ll see how
Autodesk MapGuide fits into the picture.

You have an MWF file pointing to a database containing parcel information
(lot number, street address, owner’s name and so on) and you want to list the
contents of the database at the bottom of an HTML page displaying the map.
To do so, first rename the HTML file with an .asp extension and place it in a
directory with script or execute permissions. Then add some code to specify
the scripting language, establish a connection to the appropriate database
records, and control the database output.

The next sections describe each of those tasks in more detail.

Summary of ASP events

Event Description

Session_OnStart Runs the first time a user accesses your application.

Session_OnEnd Runs when a user’s session times out or when a user quits
your application.

Application_OnStart Runs once, when the first page of your application is
accessed for the first time by any user; does not run after
another user accesses the first page of your application. The
web server needs to be shut down for Application_OnStart
to run again.

Application_OnEnd Runs when the web server is shut down.
104 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
Refer to
MapGui
help for
mation o
Specifying a Scripting Language

ASP scripts are written in VBScript, a lightweight Visual Basic-like scripting
language, or in JScript, Microsoft’s version of JavaScript. ASP files should
begin with a line telling ASP which language you’re using (although a default
of VBScript is assumed if the line is omitted). Since we’re using VBScript, our
line will look like this:

<%@ LANGUAGE="VBSCRIPT"%>

Note the use of <% and %>, which identify the line as server-side code ASP
should process.

Selecting Database Records

Next, we’ll add a some code to define a selected set of database records. This
selection is known as a recordset. To come up with a recordset, we need to
know which database table to connect to, and which records to select from
that table. If your map links to a table called Parcel_Data through an OLE DB
data source called Assessors, the recordset code will look like this:

<%
Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open("Assessor")
SQLQuery = "SELECT * FROM Parcel_Data WHERE Year_Built = '1963'"
Set RS = dbConnection.Execute(SQLQuery)

%>

This might seem complicated compared to ColdFusion’s <CFQUERY> tag, but
it will look familiar to Visual Basic programmers. The end result is a Recordset
object variable, RS, which represents all houses in Parcel_Data that have a
Year_Built value of “1963”.

Note Don’t be put off by this code if you are unfamiliar with Visual Basic. All of
your ASP database queries will follow this basic format, with only the DSN and
SQL statement varying.

Let’s go through the recordset script line by line. The first line of code uses
the CreateObject method of the Server object to create a new Connection
object, which is assigned to a variable called dbConnection.

Set dbConnection = Server.CreateObject("ADODB.Connection")

The next line opens a connection to the data source name (DSN), in this case
“Assessor”, and assigns that connection to the dbConnection variable. Note
that Open is a method of the Connection object, in this case dbConnection.

dbConnection.Open("Assessor")

re info...
the Autodesk
de online
more infor-
n OLE DB.
Creating Report Scripts with ASP | 105

The third line creates a variable that holds a SQL statement specifying the
database records we want to work with. As we saw in the previous example,
selecting everything in the database produces a page of browser-choking
proportions, so our SQL query is limited to houses built in 1963.

SQLQuery = "SELECT * FROM Parcel_Data WHERE Year_Built = '1963'"

The last line puts it all together, creating a Recordset object and assigning it
to an object variable named RS. Note that Execute is a method of the
Connection object, in this case dbConnection. We’re using Execute to run the
SQL statement we assigned to SQLQuery.

Set RS = dbConnection.Execute(SQLQuery)

Controlling the Output

Now that we have our Recordset object, let’s add a block of code that controls
how the database output is displayed on the page. This code should appear
within <BODY>, at the location where you want the database output to
appear. If you want to display the parcel number, owner’s name, and year
built, your output code will look like this:

<%
Do While Not RS.EOF

%>
<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner_Name")%>

Year Built: <%=RS("Year_Built")%></P>
<%

RS.MoveNext
Loop

%>

If you’re used to client-side scripting, this code might look peculiar. Notice
how it is actually two different script tags that operate on HTML code sand-
wiched in the middle.

Let’s look at the HTML portion first:

<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner_Name")%>

Year Built: <%=RS("Year_Built")%></P>

As with ColdFusion, this is standard HTML plus a few variables. ASP variables
use the standard ASP script tags (<% and %>), as well as an equal sign that
tells ASP to substitute the actual value for the variable. In this case, the value
is a field in your map-resource database. For example, RS("APN") is the APN
column in the database represented by the RS object you created earlier.

Without the accompanying script tags, the HTML would display the APN,
Owner_Name, and Year_Built fields for only the first record in the database:
106 | Chapter 4 Using Reports to Query and Update Data Sources

Parcel Number: 941-0103-003-01
Owner: James P & Bonnie G Reed
Year Built: 1963

This is a good start, but not quite what we want. To cycle through the records,
we’ll need to add some sort of looping code. That’s what the two scripts are
for.

The beginning script contains a single line, which operates on the RS object.
RS.EOF represents RS object’s “end-of-file” property. In effect, the line is
saying “do the following until you reach the end.”

Do While Not RS.EOF

The ending block contains two lines, one that advances to the next record in
the recordset and the another that finishes up the loop structure:

RS.MoveNext
Loop

Now we’re ready to load the page in our browser.

Seeing the Results

Here’s a listing of the complete ASP file parcel_report.asp, followed by an illus-
tration of the page as it appears in a browser:

<HTML>
<HEAD>
<!-- code to create recordset -->
<%

Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open ("Assessor")
SQLQuery = "SELECT * FROM Parcel_Data WHERE YearBlt = '1963'"
Set RS = dbConnection.Execute(SQLQuery)

%>
<TITLE>ASP Test #1</TITLE>
</HEAD>
<BODY>
<H1>ASP Test #1</H1>
<!-- output code -->
<%

Do While Not RS.EOF
%>
<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner")%>

Year Built: <%=RS("yearblt")%></P>
<%

RS.MoveNext
Loop

%>
</BODY>
</HTML>
Creating Report Scripts with ASP | 107

For mo
Refer to
Internet
Server o
tation an
web site
(www.m
The HTML output

Like the earlier ColdFusion example, this page is very simple, only hinting at
the power of what you can do with ASP. And like the earlier example, this is
not really an Autodesk MapGuide application. The database happens to be
an Autodesk MapGuide resource, but it could be any database you have
access to through a DSN. In most cases, you will want to access your data-
bases through the Autodesk MapGuide Viewer by linking them to features
and layers in the map. The examples that follow show you how to do this.

Example—Querying and Displaying Data via the Map

Now that we’ve seen how ASP works, let’s use it with Autodesk MapGuide.

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying report information in Autodesk MapGuide Author.

Our report will be called “Parcel Data (ASP)”, and it will access a server page
whose URL is http://www.yourserver.com/asp/parcel_report.asp. We want the
server page to display information about user-selected features on a layer
called “Assessment.” The Map Window Properties dialog box shown next
reflects our selection.

re info...
the Microsoft
 Information
nline documen-
d the Microsoft

icrosoft.com).
108 | Chapter 4 Using Reports to Query and Update Data Sources

Dialog box specifications for ‘Parcel Data (ASP)’

Here are descriptions of how we used the options on the Reports tab:

Report Specifies the name of the report as it appears in the
Autodesk MapGuide Viewer. Our report is named “Parcel
Data (ASP)”.

URL Specifies the name and location of the report script, in this
case parcel_report.asp on www.yourserver.com.

Data We left this field blank but could have used it to pass addi-
tional URL parameters to parcel_report.asp. For example, if
our server page contained definitions for more than one
query, we might have passed a parameter telling the file
which of the queries to run.

Type Specifies whether the report is based on the keys of
selected features (as this one is), or on the coordinates of
a point the user clicks.

For Map Layers Specifies the layer or layers you want the report to be
linked to. Our report operates only on features on the
Assessment layer.

Parameter Specifies the name of the URL parameter used to send the
feature key (or keys) to parcel_report.asp. The name can be
anything you want, as long as it matches the name you
specified in parcel_report.asp. We’ve selected the Autodesk
MapGuide Author default, “OBJ_KEYS”.
Creating Report Scripts with ASP | 109

When a user selects one or more features from the Assessment layer and runs
the Parcel Data (ASP) report, Autodesk MapGuide constructs a URL that
invokes parcel_report.asp and tells it to generate a report on the selected
features, which are identified by their OBJ_KEY values. If the user selected a
single feature whose key was “941-0176-003-00”, the URL would look like
this:

http://www.yourserver.com/asp/parcel_report.asp?OBJ_KEYS='941-0176-
003-00'

If the user selected multiple features, the URL might look like this:

http://www.yourserver.com/asp
parcel_report.asp?OBJ_KEYS='941-0176-003-00','941-0176-006-00','941-0176-004-00'

Note that OBJ_KEYS is represented as a standard URL parameter. To ASP, this
parameter is no different from one submitted by an HTML form element. As
we’ll see in the next section, ASP processes it accordingly.

Creating the Report Script

Now let’s create the ASP file that will process the Autodesk MapGuide report.
The following listing is for the parcel_report.asp file:

<HTML>
<HEAD>

<TITLE>ASP Report Data</TITLE>
</HEAD>
<BODY>
<!-- code to create recordset -->
<%
Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open ("assessor")
SQLQuery = "SELECT * FROM Parcel_Data WHERE APN IN (" & request.form ("OBJ_KEYS") & ")"
Set RS = dbConnection.Execute(SQLQuery)
%>
<H1>ASP Report Data</H1>
<!-- output code -->
<%

Do While Not RS.EOF
%>
<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner")%>

Year Built: <%=RS("yearblt")%></P>
<%

RS.MoveNext
Loop

%>
</BODY>
</HTML>
110 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
see “Dis
an HTM
Autodesk
Viewer A
Note that the VBScript code is almost identical to that in the first example
(“Example—Listing File Contents with ASP” on page 104). The only change
is to the value we assign the SQLQuery variable:

SQLQuery = "SELECT * FROM Parcel_Data WHERE APN IN (" & request.form ("OBJ_KEYS") & ")"

As with the previous example, the statement is selecting records from the
Parcel_Data DSN. The difference is that the WHERE clause now points to
Request.Form, the ASP Request object’s Form collection. The Request object is
used by ASP to parse submitted data received from a client as part of a URL.
Form is a collection representing the URL parameters, which can be accessed
from the collection by name. In this case, the collection has only one
member, the OBJ_KEYS parameter we specified in Autodesk MapGuide
Author.

The SQL statement is basically saying “in Parcel_Data, select all records whose
APN field matches OBJ_KEYS.” Put more simply, it’s saying “select the records
that correspond to the selected features on the map.” If OBJ_KEYS contains
multiple keys, ASP outputs the feature data associated with each key.

Creating an HTML Page to Display the Map

The last step is to create an HTML page to display our map. The following
listing is for a file called parcel_map.htm.

<HTML>
<HEAD>

<TITLE>ASP Example</TITLE>
</HEAD>
<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ASP to access an Autodesk MapGuide Re-
port</P>
<!-- embedded map -->
<OBJECT ID="myMap" WIDTH=600 HEIGHT=250

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"

VALUE="http://www.yourserver.com/maps/StarterApp.mwf>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf

NAME="myMap"
WIDTH=600 HEIGHT=250>

</OBJECT>
</BODY>
</HTML>

re info...
playing a Map in
L Page” in the
 MapGuide
PI Help.
Creating Report Scripts with ASP | 111

Seeing the Results

Now we’re ready to view parcel_map.htm in our web browser. Users can
generate a report on one or more map features by selecting the features,
selecting View � Reports from the popup menu, and then selecting Parcel
Data (ASP).

Displaying the report in a new window

That looks pretty good, but we can still do a few things to improve the inter-
face.
112 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
see “Vie
Paramet
Autodesk
Viewer A
Redirecting Report Output

To avoid cluttering the desktop, let’s generate the report in the current
browser window, instead of displaying it in a new instance of the browser. Go
back to parcel_map.htm and modify the embedded map code:

<OBJECT ID="myMap" width=600 height=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">

<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTar-

get=_self>
<EMBED src="http://www.yourserver.com/maps/StarterApp.mwf?ReportTar-

get=_self
NAME="myMap"WIDTH=600 HEIGHT=250>

</OBJECT>

Notice that we’ve added a Viewer URL parameter to the map reference:

http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self

ReportTarget specifies the window or frame in which you’d like your report
to display. By specifying _self, we redirect the report output so that it displays
in the current window.

Displaying the report in the current window

re info...
wer URL
ers,” in the
 MapGuide
PI Help.
Creating Report Scripts with ASP | 113

At first glance this appears to be a good solution, but it has some problems.
Users might get confused about where they are. Worse yet, when they click
the Back button, they will find that the map has been reloaded and the loca-
tion they zoomed to has been lost. A better approach is to display the map
and the report in two frames of the same window. Let’s do that now.

Start by creating a standard HTML file that defines a frameset. The frameset
should display the map on the left and a blank page on the right:

<HTML>
<HEAD>

<TITLE>ASP Report Data</TITLE>
</HEAD>
<!-- frames -->
<FRAMESET COLS="65%,*">

<FRAME NAME="Left" SRC="parcel_map.htm" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">

<FRAME NAME="Right" SRC="about:blank" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">

</FRAMESET>
</HTML>

Notice that we’ve assigned the names Left and Right to the frames. The source
for Left is parcel_map.htm, the file containing our embedded map. The source
for Right is about:blank, a standard browser function whose purpose is to
display a blank window or frame.

We have the frameset, so let’s go back to parcel_map.htm and change the
ReportTarget parameter to Right, the name we assigned to our right-hand
frame:

<OBJECT ID="myMap" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://www.yourserver.com/maps/Starter-

App.mwf?ReportTarget=Right>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf?Re-

portTarget=RightNAME="myMap"WIDTH=600 HEIGHT=250>
</OBJECT>

Now let’s see how it looks.
114 | Chapter 4 Using Reports to Query and Update Data Sources

Displaying the report in a frame

This is an improvement because your users can now invoke as many reports
as they want, without losing their place in the map or calling a new instance
of the browser.

Adding a Button with the Viewer API

Now we’ll make one last change to add some polish. An Autodesk MapGuide
report is generated by right-clicking the map and then choosing View �
Reports from the popup menu. This interface is not immediately apparent to
users, so we’ll make it easier for them by creating a “Parcel Report” button
that will display the report.
Creating Report Scripts with ASP | 115

For mo
See Cha
Autodesk
Viewer A
informat
Viewer A
First we’ll add the following <SCRIPT> tag to parcel_map.htm:

<SCRIPT>
function getThisMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.myMap;

else
return parent.Left.window.myMap;

}

function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getThisMap().viewReport('Parcel Data (ASP)');

}
</SCRIPT>

The <SCRIPT> tag holds two JavaScript functions. The first function is our old
friend getThisMap(), which we’re using to smooth out some differences
between Netscape and Internet Explorer (for more information, see
“Accessing the Map Programmatically” on page 15). The second function,
runReport(), displays our Autodesk MapGuide report.

The runReport() function consists of two statements. The first statement
writes a line of text to the right-hand frame of our report application:

parent.Right.document.write("<P>Select one or more parcels first.</P>");

You’ll notice that the text instructs users to select one or more map features.
This instruction displays every time runReport() is invoked, regardless of
whether the user has selected features. If features are selected, the instruc-
tions are replaced in the frame by the contents of the newly generated report;
otherwise, the instructions remain in the frame to provide feedback.

Note “parent” refers to the top-level frame and “Right” is the name we specified
for our right-hand frame in parcel_frames.htm. Refer to a third-party JavaScript
manual for more information on writing to frames and windows.

The second statement uses viewReport(), a Viewer API function, to run our
report:

getThisMap().viewReport('Parcel Data (ASP)');

The statement starts out by calling getThisMap(), which returns the appro-
priate map feature. That feature is then passed to viewReport(), which directs
Autodesk MapGuide to display a specified report, in this case “Parcel Data
(ASP).”

re info...
pter 2 and the
 MapGuide
PI Help for more
ion on the
PI.
116 | Chapter 4 Using Reports to Query and Update Data Sources

Now that our function is defined, we need a way to call it. Let’s add a <FORM>
element to parcel_map.htm:

<FORM>
<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>

</FORM>

This is a standard HTML form consisting of a single button named “Parcel
Report”. By setting the value of ONCLICK to "runReport()", we specify that the
function should be invoked each time a user clicks the button.

Note A JavaScript function must appear above the JavaScript code that calls it.
This keeps users from trying to call a function before it has been parsed by the
browser. JavaScript functions are typically defined in a single <SCRIPT> tag in the
<HEAD> section of the HTML file.

Now let’s look at the final text of parcel_map.htm, as well as the finished appli-
cation. The illustration shows the results if no map features have been
selected.

<HTML>
<HEAD>

<TITLE>ASP Example</TITLE>
<!-- JavaScript functions -->
<SCRIPT>

// function #1
function getThisMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.myMap;

else
return parent.Left.window.myMap;

}
// function #2
function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getThisMap().viewReport('Parcel Data (ASP)');

}
</SCRIPT>

</HEAD>
<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ASP to access an Autodesk MapGuide Re-
port</P>
Creating Report Scripts with ASP | 117

<!-- embedded map -->
<OBJECT ID="myMap" WIDTH=600 HEIGHT=250

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://www.yourserver.com/maps/Starter-

App.mwf?ReportTarget=Right>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf?Re-

portTarget=RightNAME="myMap" WIDTH=600 HEIGHT=250>
</OBJECT>
<!-- Parcel Report button -->
<FORM>

<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>
</FORM>
</BODY>
</HTML>

The finished product

The next example shows you how to modify a database via the map.
118 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
For infor
adding f
SDF files
database
Chapter
Example—Modifying a Database via the Map

This example shows how to create an application that lets users add points
to a map from their browsers. The points are stored in a database on the
server and are visible to anyone else viewing the map.

The example is of a hypothetical “Incident Log” application that will be used
to track crimes. The application consists of the following components:

� Three server pages, getpoint.asp, showform.asp, and insert.asp. As their
names suggest, the files receive point coordinates from Autodesk
MapGuide, display a form that takes additional user input, and add the
point data to a database on the server.

� An Autodesk MapGuide report (and later, a custom menu item) that passes
digitized point coordinates to getpoint.asp.

� An HTML page to host the map (except for minor text changes, this page
will be identical to parcel_map.htm from the previous example).

� An “Incidents” database table on the server and a new map layer (also
called “Incidents”) to display the contents of that table.

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying the report information in Autodesk MapGuide
Author. Our report will be called “Incidents (ASP)”, and it will pass the lat/lon
coordinates of a user-specified point to server page whose URL is
http://www.yourserver.com/asp/getpoints.asp:

Dialog box specifications for ‘Incidents (ASP)’ report

re info...
mation on
eatures to
 instead of to
s, see

 5.
Creating Report Scripts with ASP | 119

Here are descriptions of how we used the options on the Reports tab:

Report Specifies the name of the report as it appears in the
Autodesk MapGuide Viewer. Our report is named “Inci-
dents (ASP)”.

URL Specifies the name and location of the report script, in this
case getpoint.asp on www.yourserver.com.

Data We left this field blank but could have used it to pass addi-
tional URL parameters to getpoint.asp.

Type Specifies whether the report is based on the keys of
selected features, or on the coordinates of a point the user
clicks. We chose the second option, “Digitize a point and
send point.”

Prompt Specifies the text to be displayed in a message box
prompting users to specify a point. If this field is left
blank, no message box is displayed.

When a user runs the Incidents (ASP) report, Autodesk MapGuide prompts the
user to specify a point. Then it invokes getpoint.asp, passing the point’s
lat/lon coordinates as URL parameters (more specifically, the coordinates are
sent as form data via the HTTP POST method). For example, if the user spec-
ified a point whose coordinate values were -121.943,37.721, the URL would
look like this:

http://www.yourserver.com/getpoint.asp?LAT=-121.943&LON=37.721

Creating the Report Scripts

Next we’ll create the files getpoint.asp, showform.asp, and insert.asp.

The first file, getpoint.asp, creates a small browser window and then calls a
second file, showform.asp, passing along the coordinate values it received
from Autodesk MapGuide. Here is the first file, getpoint.asp:

<SCRIPT language="JavaScript">
window.close();
var loc = "showform.asp?LAT=" + "<%=Request.Form("lat")%>"

+ "&LON=" + "<%=Request.Form("lon")%>";
win = window.open(loc,"ShowFormWin",

"width=300,height=170,dependent=yes,resizable=yes");
win.focus();
</SCRIPT>

Note that getpoint.asp consists of a single <SCRIPT> element containing a block
of JavaScript code; because the file doesn’t display any text, no other HTML
tags are needed. Let’s look at the code line by line.
120 | Chapter 4 Using Reports to Query and Update Data Sources

When getpoint.asp is first called it uses a default browser window similar to
the one we saw in the previous example. The first line of code closes that
window:

window.close();

Note Because the browser parses the entire <SCRIPT> block before running the
first line of code, we can safely close the window, knowing our script will continue
to run. Be aware, however, that this strategy will get you into trouble if your file
contains function calls or other multiple <SCRIPT> blocks. See your JavaScript doc-
umentation for more information.

The next line constructs a URL and assigns it to a variable called “loc”:

var loc = "showform.asp?LAT=" + "<%=Request.Form("lat")%>"
+ "&LON=" + "<%=Request.Form("lon")%>";

Note that the line is a mix of both JavaScript and ASP code. The ASP code is
processed first, on the server. Then the line is sent to the browser as standard
JavaScript. Let’s look at how it works.

As you might recall from the previous example, ASP variables use the stan-
dard ASP script tags (<% and %>), as well as an equal sign that tells ASP to
substitute the actual value for the variable. In this case, the variables hold the
values Request.Form("lat") and Request.Form("lon"), both of which refer
to Request.Form, the ASP Request object’s Form collection. The Request object
is used by ASP to parse submitted data received from a client as part of a URL.
Form is a collection representing HTML form parameters transmitted via the
HTTP POST method; these parameters can be accessed from the collection by
name. In this case, the collection has two members: the LAT and LON param-
eters that were posted to the file by the Autodesk MapGuide Viewer. After the
ASP code is processed, a line similar to the following is sent to the browser:

var loc = "showform.asp?LAT=" + "-121.943" + "&LON=" + "37.721";

The effect of this line is to create a variable called “loc” and to assign it the
value showform.asp?LAT=-121.943&LON=37.721.

The next line creates a new browser window, using the loc variable to supply
the URL:

win = window.open(loc,"ShowFormWin",
"width=300,height=170,dependent=yes,resizable=yes");

The last line shifts browser focus to the new window we just created:

win.focus();
Creating Report Scripts with ASP | 121

Now, let’s look at the second file, showform.asp:

<HTML>
<HEAD>

<TITLE>Attribute Input</TITLE>
</HEAD>
<BODY BGCOLOR="SILVER">
<FORM Name=myForm METHOD="POST" ACTION="insert.asp">

<INPUT TYPE="HIDDEN" NAME="rpt_lat"
VALUE="<%=Request.QueryString("lat")%>">

<INPUT TYPE="HIDDEN" NAME="rpt_lon"
VALUE="<%=Request.QueryString("lon")%>">

Incident Report:

<INPUT TYPE="TEXT" MAXLENGTH="30" NAME="rpt_info" SIZE="33">

Reported By:

<INPUT TYPE="TEXT" MAXLENGTH="30" NAME="rpt_by" SIZE="33">

<CENTER>
<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="OK">
<INPUT TYPE="button" NAME="CancelButton" VALUE="Cancel"

onClick="window.close()">
</CENTER>

</FORM>
</BODY>
</HTML>

The showform.asp file does indeed show a form, which is used to enter a
description of the crime (euphemistically referred to as an “incident”).

The form follows HTML syntax, but also contains the ASP variables
<%=Request.QueryString("lat")%> and <%=Request.QueryString("lon")%>.
The Request.QueryString collection is similar to Request.Form, but instead of
holding HTML form values transmitted via the HTTP GET method, it can
hold either of the following:

� HTML form parameters transmitted via the HTTP POST method

� URL parameters that were added to the URL directly, instead of being gen-
erated by a form

We use QueryString in this case, because the URL parameters that were sent
to showform.asp were created explicitly by JavaScript code in getpoint.asp.

Note Use Request.Form if your data is being transmitted from an HTML form via
the HTTP POST method. Use Request.QueryString if your data is being trans-
mitted from an HTML form via the HTTP GET method, or if it is coming from a
URL parameter not associated with any form.
122 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
Refer to
book on
informat
using fo
In short, an HTML form collects data from the user and sends that data to a
program in the form of a URL. The form in showform.asp calls yet another ASP
file, insert.asp, passing it the following parameters:

� The latitude value obtained from the ASP variable
<%=Request.QueryString("lat")%>; this value is passed as the form
parameter “rpt_lat”.

� The longitude value obtained from the ASP variable
<%=Request.QueryString("lon")%>; this value is passed as the form
parameter “rpt_lon”.

� An incident description entered in the form by a user; this description is
passed as the form parameter “rpt_info”.

� A name entered in the form by a user; this name is passed as the form
parameter “rpt_by”.

The following illustration shows the showform.asp form, as displayed in the
window created by getpoint.asp:

Entering data into the showform.asp form

re info...
a third-party
 HTML for
ion about
rms.
Creating Report Scripts with ASP | 123

Specifying the lat/lon points -121.943,37.721 by clicking the map and filling
out the form as shown in the illustration will result in the following URL
being constructed and passed to insert.asp:

insert.asp?rpt_lat=-121.943&rpt_lon=37.721&rpt_info=A+cat+was+stolen&rpt_by=J+Appell

Now we’ll see how insert.asp handles the URL:

<%
Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open("assessor")
SQLQuery =

"INSERT into Incidents (lat, lon, description, reported_by)" & _
"values('" & Request.Form("rpt_lat") & "','" & _
Request.Form("rpt_lon") & "','" & Request.Form("rpt_info") & _
"','" & Request.Form("rpt_by") & "')"

dbConnection.Execute(SQLQuery)
%>
<SCRIPT language="JavaScript">
alert("Point added successfully! Reload the map to see your changes.");
window.close();
</SCRIPT>

Like getpoint.asp, the file contains no displayable text. Instead, it contains
two blocks of code. One is an ASP script, written in VBScript. The other is an
HTML <SCRIPT> element containing JavaScript code.

Let’s go through the ASP code line by line. The first line of code uses the
CreateObject method of the Server object to create a new Connection object,
which is assigned to a variable called dbConnection.

Set dbConnection = Server.CreateObject("ADODB.Connection")

The next line opens a connection to the data source name (DSN), in this case
“Assessor,” and assigns that connection to the dbConnection variable. Note
that Open is a method of the Connection object, in this case dbConnection.

dbConnection.Open("Assessor")

The third line creates a variable that holds an SQL statement specifying the
data we want to add to the Incidents table:

SQLQuery =
"INSERT into Incidents (lat, lon, description, reported_by)" & _
"values('" & Request.Form("rpt_lat") & "','" & _
Request.Form("rpt_lon") & "','" & Request.Form("rpt_info") & _
"','" & Request.Form("rpt_by") & "')"

Because insert.asp is receiving its information directly from a form (instead of
from a URL we constructed programmatically), we call Request.Form instead
of Request.QueryString. After Request.Form supplies the values from show-
form.asp, the line looks like this:
124 | Chapter 4 Using Reports to Query and Update Data Sources

SQLQuery =
"INSERT into Incidents (lat, lon, description, reported_by)" & _
"values('-121.943','37.721','A cat was stolen','J Appell')"

The last line runs the SQL statement we assigned to SQLQuery, adding the
new record to the database.

dbConnection.Execute(SQLQuery)

Note If a user enters an apostrophe (like the one found in “can’t”, “won’t”, and
“doesn’t”) into the showform.asp form, it will cause a syntax error when ASP tries
to execute the SQL statement. The way around this is to add code to replace a
single apostrophe with two apostrophes. For example you might want to change
Request.Form("rpt_info") to Replace(Request.Form("rpt_info"),"'","''").
See your ASP documentation for more information.

Now let’s look at the contents of the <SCRIPT> element:

alert("Point added successfully! Reload the map to see your changes.");
window.close();

The first line displays an alert telling users to reload the map to see their
changes. The second line closes the form window, leaving only the original
map window.

Creating an HTML Page to Display the Map

The last step is to create an HTML page to display our map. We’ll use the
parcel_map.htm file from the previous example, modifying the <H1> and the
short paragraph of descriptive text, but leaving the rest of the file unchanged:

<HTML>
<HEAD>

<TITLE>ASP Example</TITLE>
</HEAD>
<BODY>
<!-- Only the next two lines are different -->
<H1>Modifying a Database via the Map</H1>
<P>This example uses ASP to update a database map
resource</P>
<!-- embedded map -->
<OBJECT ID="myMap" WIDTH=600 HEIGHT=250

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://www.yourserver.com/maps/Starter-

App.mwf?ReportTarget=Right>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf?Re-

portTarget=RightNAME="myMap" WIDTH=600 HEIGHT=250>
</OBJECT>
</BODY>
</HTML>
Creating Report Scripts with ASP | 125

Creating a Custom Menu Item

As we designed it, our report has a few problems. The first is that it requires
too many mouse clicks: users have to select View � Reports from the map-
window popup menu, then they have to select Incidents (ASP) from the list,
then they have to clear the alert box that tells them to select a point, then
they have to digitize the point. The other problem is that because our report
isn’t associated with a layer, users can add items to the Incidents map layer
even when that layer isn’t visible.

We can solve both of these problems by creating a custom menu item that
takes the place of the report. We do so by selecting the following options on
the Popup Menu tab of the Map Window Properties dialog box:

Dialog box specifications for ‘Incident Log’ menu item

Here are descriptions of how we used the options on the Popup Menu tab:

New Menu Item Creates a new popup menu item below the item selected
in the Popup Menu list.

Name Specifies the name of the menu item as it will appear in
the Viewer. Our menu item is named “Incident Log.”

Action Specifies the task to be performed by the menu item. We
selected “GetPointAndSendToURL” from the drop-down
list.

Arguments Specifies arguments to use with the selected action, in this
case the path to getpoint.asp and the name of the layer we
want to add data to.
126 | Chapter 4 Using Reports to Query and Update Data Sources

For mo
Refer to
MapGuid
Help.
When users select Incident Log from the popup menu, they will immediately
be able to enter a point, thus bypassing several mouse clicks. Also, if the Inci-
dents layer is not visible because the map is zoomed outside of the layer’s
display range, the Incidents Log menu item will be unavailable.

Accessing Your Application with the Viewer API

Because the Incident Log application runs in a separate instance of the
browser, it does not have programmatic access to the map window. This
means the application cannot refresh the map automatically. (That’s why we
have a JavaScript alert() box telling the user to reload the map manually.)

To solve this problem and to avoid having the user need to reload the map
manually, use the Viewer API to access the Incident Log application. Instead
of creating a report or custom menu item, add a button or other interface
element to the HTML page hosting the map (or to a frame or child window
with programmatic access to that page). The button should invoke a
JavaScript function that does the following:

� Uses the digitizePoint() method to get the coordinates of a user-specified
point.

� Invokes getpoint.asp, passing the point coordinates as URL parameters.

� Refreshes the map after getpoint.asp, showform.asp, and insert.asp have
completed their work.

Now that you have seen how to update your databases using report scripts,
read the next chapter to learn how to update SDFs using the Autodesk
MapGuide SDF Component Toolkit.

re info...
the Autodesk
e Viewer API
Creating Report Scripts with ASP | 127

128

In This Chapter

� About the SDF
Component Tool

� Working with SD
files

� Performing comm
tasks with the To

� Updating SDFs vi
map

� Visual Basic Exam
5

Using the SDF Component
Toolkit to Modify Spatial
Data
129

kit

F

on
olkit

a the

ples
You can use the Autodesk MapGuide SDF Compo-

nent Toolkit to create server-side applications that

read and modify existing SDF files. These applica-

tions can interact with client-side scripts, allowing

for dynamic updates based on user input. For

example, you could create an application that lets

users add polygon lot lines or points of interest to

a map from their browser. This chapter introduces

the Toolkit and provides an example of updating

SDFs via the map.

For mo
Refer to
MapGuid
ment Too
descript
their con
About the SDF Component Toolkit

Autodesk MapGuide SDF Component Toolkit is a set of COM objects for
reading and writing Spatial Data Files (SDF), Spatial Index Files (SIF), and Key
Index Files (KIF). It provides the feature-by-feature control over SDF contents
that Autodesk MapGuide SDF Loader does not provide. You can access SDF
Component Toolkit objects in development environments such as C++,
Visual Basic, VBA, VBScript, Java, JavaScript, Active Server Pages (ASP),
ColdFusion, and the Common Gateway Interface (CGI).

You can install the SDF Component Toolkit from either the Autodesk
MapGuide Author or Autodesk MapGuide Server CD. For detailed informa-
tion about the SDF Component Toolkit, refer to the Autodesk MapGuide SDF
Component Toolkit Help, an online help file that comes with the Toolkit.

Toolkit Objects

The Autodesk MapGuide SDF Component Toolkit contains the following
objects:

The following sections describe each object. For a list of the methods and
properties associated with each object, refer to the SDF Component Toolkit
online help.

re info...
the Autodesk
e SDF Compo-
lkit Help for a

ion of SDFs and
tents.
130 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

SdfToolkit

The SdfToolkit object represents an SDF file, which is identified by the
SdfToolkit.Name property. All operations on the SDF file must be carried out
after calling the SdfToolkit.Open method and before calling the
SdfToolkit.Close method. The following information describes how to access
and modify map features in the SDF.

Accessing map features

The SdfToolkit object contains SdfObject objects, which represent map
features in the SDF file. There are three ways to access these map features.

� Sequential search After calling BeginSequentialSearch, call
SearchToNextObject to iterate to the next map feature in sequence. Call
EndSearch to conclude the search.

� Spatially indexed search After calling BeginSpatialIndexSearch, call
SearchToNextObject to iterate to the next map feature that matches type
and location criteria. Call EndSearch to conclude the search. This tech-
nique uses the SIF file, which must always co-exist with the SDF.

� Key indexed search After calling BeginKeyIndexSearch, call
SearchToNextObject to iterate to the next map feature that matches a
given key. Call EndSearch to conclude the search. Note that you cannot
perform a key-indexed search unless the SDF file has an associated KIF file.

Modifying map features

To update an existing map feature in the SDF, you delete it from the SDF file
and replace it with a new one. To do this, you can get a copy of the feature
from the Toolkit, use SdfToolkit.DeleteObject to delete the feature from the
file, modify the geometry in the copy of the feature, then call
SdfToolkit.AddObject to add it back to the SDF file. Note that you can add and
delete map features during an update process only, which is initiated by a call
to SdfToolkit.BeginUpdate and concluded by a call to SdfToolkit.EndUpdate.

SdfObject

The SdfObject object represents a map feature in an SDF file. It contains an
SdfObjectGeometry object, which represents the map feature’s geometry data.

SdfObjectGeometry

The SdfObjectGeometry object stores the geometry data of a map feature in
an SDF file. It is an indexed collection of SdfObjectGeometrySegment objects.
The index of the first SdfObjectGeometrySegment object is 0.
About the SDF Component Toolkit | 131

SdfObjectGeometrySegment

The SdfObjectGeometrySegment object represents a segment of geometry
data for an SdfObject object. It is an indexed collection of SdfDoublePoint
objects. The index of the first SdfDoublePoint object is 0. SdfObjectGeometry-
Segment objects are collected in SdfObjectGeometry objects.

SdfDoublePoint

The SdfDoublePoint object represents a point in an SDF file. SdfDoublePoint
objects are collected in SdfObjectGeometrySegment objects.

SdfBoundingBox

The SdfBoundingBox object represents a bounding box, which is the smallest
rectangle that can be drawn around an individual map feature (including all
of its constituent elements), an SDF file (including all of its map features), or
the limits of a spatially indexed search.

SdfCoordinateSystemMetadata

The SdfCoordinateSystemMetadata object stores all elements of the coordi-
nate system metadata of an SDF file, including the coordinate system code.

Status Codes

As with all applications, you should verify the status code returned from the
current method before calling the next method. This is good programming
practice that can reduce testing and debugging time.

When an SDF Component Toolkit method executes, it reports its status by
returning an HRESULT code if you are coding in C++. If you are coding in
Visual Basic, you call Err.Number to retrieve the status code, where “Err” is the
name of the standard VB error object. In JavaScript and ColdFusion, the
system automatically captures the status code and displays an error message.

Note In some environments, such as JavaScript, VBScript, or ColdFusion, you
must refer to status codes by number. In other environments, such as Visual Basic,
you can use their symbolic names.

Status codes are organized into the following three groups.

� Spatial Data File status codes sdfxx 0x80041nnn
� Spatial Index File status codes sifxx 0x80042nnn
� Key Index File status codes kifxx 0x80043nnn
132 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

For a list of the status codes in each of these groups, refer to the Autodesk
MapGuide SDF Component Toolkit help.

Enumerated Constants

An enumerated constant group is used where a limited set of arguments is
allowed for a parameter.

Note In some environments, such as JavaScript, VBScript, or ColdFusion, you
must refer to enumerated constants by number. In other environments, such as
Visual Basic, you can use their symbolic names.

There are four types of enumerated constants:

� SdfFileType constants
� SdfOpenFlags constants
� SdfObjectClass constants
� SdfObjectType constants

For a list of the enumerated constants and their values, refer to the
Autodesk MapGuide SDF Component Toolkit Help.

Working with SDF Files

This section provides information about SDFs and the issues you need to be
aware of when you work with them. For a complete discussion about the
contents of SDF files, refer to the Autodesk MapGuide SDF Component Toolkit
Help.

Indexing

SDF data is indexed in associated Spatial Index Files (SIF) and Key Index Files
(KIF). Whenever the SDF Loader creates an SDF file, it creates a corresponding
SIF file. Optionally, it creates a KIF file as well. SIF and KIF files have the same
file names as their associated SDF files. SIF and KIF files are used by Autodesk
MapGuide SDF Component Toolkit to access map features.

To create a KIF file for an existing SDF file, use SDF Loader or SDF Component
Toolkit to convert the existing SDF to a new SDF, and specify that a KIF file
should be output as well. Note that the output SDF in this process has to be
named differently from the source. When the process is finished, you can
delete the source and rename the output SDF, SIF, and KIF files with the orig-
inal name.
Working with SDF Files | 133

Editing

SDF is a binary file format. To edit SDF files directly, you need Autodesk
MapGuide SDF Component Toolkit, but you can edit them indirectly with
Autodesk MapGuide SDF Loader. First, use SDF Loader to convert the data to
SDL, which you can edit with a text editor, and then use SDF Loader again to
convert the result to SDF. You can also edit the file that the SDF data origi-
nally came from. First modify it in its native application, and then use SDF
Loader to convert the result to SDF.

SDF Pitfalls

The following list explains some pitfalls you might encounter when working
with SDFs.

Fragmented
Data

Deleting many map features from an SDF file can frag-
ment its data. To compact a fragmented SDF file, use SDF
Loader or the Toolkit to convert the fragmented SDF file
to a new SDF file with a different name. You can then
delete the old SDF and rename the new SDF with the orig-
inal name.

Read and Write
Issues

You cannot open an SDF file for writing while Autodesk
MapGuide Server is accessing it.

You cannot open an SDF file even for reading if it is open
for writing by another application, and neither can
Autodesk MapGuide Server. If Server tries to access an SDF
to service a request while the file is open for writing, the
request fails, and Server returns the following error
message.

Unable to open Spatial Data File…

To avoid such conflicts, you should modify an online SDF
by editing a copy of it. When you are finished, replace the
original with the modified copy.

Mismatched
Precision

If the floating point precision for a given SDF and its cor-
responding SIF do not agree, the Toolkit returns the status
code sdfPrecisionMismatch when you open the SDF file for
writing. To correct this condition, you can generate a new
SDF file from the existing one using either Autodesk
MapGuide SDF Loader with the /COORDPREC switch set
or SDF Component Toolkit with the SdfToolkit.Precision
property set. The possible values are 32 or 64. Setting this
134 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

value for a new SDF file sets it for the corresponding SIF
file automatically.

Note that precision mismatch is a possible problem only
with SDF files created with Autodesk MapGuide SDF
Loader 2.0 and earlier.

Unclosed
Polygons

While writing to an SDF file using the SdfObject.SetGeom-
etry method, if the Type argument is sdfPolygonObject or
sdfPolyPolygonObject, but the SdfObjectGeometry object
you are writing is not a closed figure, the function reports
sdfPolygonUnclosed. One solution is to close all unclosed
polygons before you add them to the SDF file. Alterna-
tively, you can append polygons to the SDF file with
Autodesk MapGuide SDF Loader, which closes unclosed
polygons as it adds them (if adding from a DWG or DXF
file, it closes them only if the /PL2PG switch is set), or you
can write an error handler in your Autodesk MapGuide
SDF Component Toolkit application to close the offend-
ing polygon and try again.

Too Many
Points

When reading or writing polylines and polygons,
Autodesk MapGuide SDF Component Toolkit returns the
status code sdfTooManyPoints if it detects a map feature
with more points than the maximum allowed (6500
points for 16-bit applications; 16384 points for 32-bit
applications). To repair this condition, use Autodesk
MapGuide SDF Loader with the /GENERALIZE switch set to
convert the original SDF file to a new one in which points
per map feature are reduced to acceptable values.

Performing Common Tasks with the Toolkit

There are seven main tasks you will perform with the Toolkit:

� Creating an SDF file
� Retrieving map features
� Finding map features within a search area
� Finding map features by key
� Modifying map features
� Appending map features
� Modifying SDF files using collection objects
Performing Common Tasks with the Toolkit | 135

The SDF Component Toolkit online help provides examples of how to
perform each of these tasks in Visual Basic. To get up and running quickly,
you can copy the code from the examples in the help, and then paste it into
your application and modify it.

The next section describes an example application that takes you beyond
these common tasks and shows you how to implement an advanced applica-
tion with the Toolkit—updating SDFs dynamically via the map.

Updating SDF Files via the Map

In the previous chapter, we showed you ways to use reporting engines to add
points to a database when the user clicks a point on the map. Similarly, you
can use the SDF Component Toolkit to add points, polylines, or polygons to
an SDF file when the user clicks the map. This section shows you how to
create such an application.

Note that Autodesk MapGuide Release 5 contains a similar functionality
called redlining. This means that users can add features to the map already
(see “Custom Redlining Application” on page 49). However, the difference
between the redlining functionality and the example in this section is that
redlining changes are saved to the MWF on the user’s computer, whereas the
example in this section updates the data source for the map. With redlining,
only the user sees the changes unless that MWF is then posted to the server.
With the following SDF example, any map that uses the SDF as its data source
will display the new points.

The example you are about to see is called Points of Interest. It uses Active
Server Pages (ASP) and SDF Component Toolkit commands to allow users to
add points of interest to the map.
136 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

Notice that the map is on the left, and there are controls on the right. To add
a point, the user types a name for the point, clicks the Digitize button, clicks
a point on the map, and then clicks the Add button. The new point and its
name are added to poi.sdf, which is the SDF file on which the Points of
Interest map layer is based. Points are represented on the map as L-shaped
symbols.

To find the point again, you can type the name of the point and click the
Find button. The map zooms to the point. To select the point, you can either
click it, or you can right-click to display the popup menu, choose
Select � Select Map Features, and then select the name of the point from the
list (if the name does not appear in the list, zoom out or click the Zoom
Extents button to zoom all the way out, causing the point to be within the
map view). To remove the point from the map, you type the name of a point
and click the Remove button. The point is then deleted from poi.sdf.

The main page is called maps_poi.htm. It contains the following code, which
sets up the frames.

<HTML>
<HEAD>

<TITLE>Points of Interest Sample</TITLE>
</HEAD>
Updating SDF Files via the Map | 137

<FRAMESET COLS="75%,*" FRAMESPACING=0>
<FRAME SRC="map.htm" NAME="mapFrame" SCROLLING=NO MARGINHEIGHT=0

MARGINWIDTH=0>
<FRAME SRC="poi.asp" NAME="poiFrame">
</FRAMESET>
</HTML>

Notice that the frame on the left, which contains the map, is called
“mapFrame” and uses the page map.htm. The frame on the right, which
contains the controls, is called “poiFrame” and uses poi.asp. First, take a look
at the code for map.htm. This file will perform the following tasks:

� Embed the map.

� Set up the event observers that pass information from the onDigitizedPoint
event to the appropriate function. You do this by defining a VBScript func-
tion for use by Internet Explorer and embedding the
MapGuideObserver5.class file for use by Netscape.

� Define a function that takes the point from the observers and updates the
text boxes with the point’s coordinates.

Map.htm

<HTML>
<HEAD>

<TITLE>Points of Interest Map</TITLE>
</HEAD>
<BODY>

<SCRIPT LANGUAGE="VBScript">
// Send onDigitizedPoint events from the ActiveX Control to the
// event-handling function
Sub map_onDigitizedPoint(Map, Point)

onDigitizedPoint Map, Point
End Sub
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
// Determine browser...
bName = navigator.appName;
bVer = parseInt(navigator.appVersion);

if (bName == "Netscape" && bVer >= 4)
ver = "n4";

else if (bName == "Microsoft Internet Explorer" && bVer >= 4)
ver = "e4";

else ver = "other";

// ...if Netscape, embed event observer
if (ver == "n4")
{

138 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

For mo
Refer to
API Help
tion abo
paramet
use to co
display o
when yo
document.write("<APPLET CODE=\"MapGuideObserver5.class\"
WIDTH=2 HEIGHT=2 NAME=\"obs\" MAYSCRIPT>");

document.write("</APPLET>");
}

// Now create the event-handling function. The function updates the
// lat & lon text boxes with the coordinates of the point the user
// clicks. Note that the name of this function must be the same as
// the event name so that the MapGuideObserver5 observer can find it.
function onDigitizedPoint(map, point)
{

if (ver == "n4")
{

parent.poiFrame.document.pointForm.pointLat.value = point.getX();
parent.poiFrame.document.pointForm.pointLon.value =

point.getY();
}
else
{

parent.poiFrame.pointForm.pointLat.value = point.getX();
parent.poiFrame.pointForm.pointLon.value = point.getY();

}
}
</SCRIPT>

//Embed the map with both the OBJECT tag and the EMBED tag so that
//it can be used by both browsers
<OBJECT ID="map" WIDTH="100%" HEIGHT="100%"

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://yourserver.com/maps/poi.mwf">
<PARAM NAME="Lat" VALUE="0">
<PARAM NAME="Lon" VALUE="0">
<PARAM NAME="MapScale" VALUE="0">
<PARAM NAME="MapWidth" VALUE="0">
<PARAM NAME="Units" VALUE="M">
<PARAM NAME="ToolBar" VALUE="On">
<PARAM NAME="StatusBar" VALUE="On">
<PARAM NAME="LayersViewWidth" VALUE="150">
<PARAM NAME="DefaultTarget" VALUE="">
<PARAM NAME="ErrorTarget" VALUE="">
<PARAM NAME="ObjectLinkTarget" VALUE="">
<PARAM NAME="ReportTarget" VALUE="">
<PARAM NAME="URLList" VALUE="Off">
<PARAM NAME="URLListTarget" VALUE="">
<PARAM NAME="AutoLinkLayers" VALUE="">
<PARAM NAME="AutoLinkTarget" VALUE="">
<PARAM NAME="AutoLinkDelay" VALUE="20">
<!-- in actual source, EMBED tag is on a single line -->
<EMBED SRC="http://yourserver.com/maps/poi.mwf?URL=

Map.htm (continued)

re info...
the Viewer
 for informa-
ut the
ers you can
ntrol the
f the map
u embed it.
Updating SDF Files via the Map | 139

So far, nothing too complex. The map is now embedded, the event observers
are set up, and the onDigitizedPoint function is in place to update the Lat and
Lon boxes with the coordinates from the point the user clicks. Now, take a
look at the ASP code in poi.asp, which drives the controls in the right-hand
frame. This code sets up the controls and the functions behind them. This is
where you will see the SDF Component Toolkit commands. Note the use of
the ASP method server.CreateObject() throughout the code; for more infor-
mation about ASP, see “Summary of ASP Objects, Components, and Events”
on page 103.

http://yourserver.com/maps/poi.mwf&Lat=0&Lon=0&MaScale=0
&Width=0&Units=M&ToolBar=On&StatusBar=On&LayersViewWidth=150
&DefaultTarget=&ErrorTarget=&ObjectLinkTarget=&ReportTarget=
&URLList=Off&URLListTarget=&AutoLinkLayers=&AutoLinkTarget=
&AutoLinkDelay=20" NAME="map" WIDTH="100%" HEIGHT="100%">

</OBJECT>
</BODY>
</HTML>

Poi.ASP

<%@ LANGUAGE="JavaScript" %>
<HTML>
<HEAD>

<TITLE>Points of Interest</TITLE>
</HEAD>

<BODY BGCOLOR="#C0C0C0">
<%
// First, set up the variables
var op = Request.Form("op");// Operation being performed, hidden
form field
var pointName = "";// Value of Name field on the form
var pointLat = "";// Value of the Lat field on the form
var pointLon = "";// Value of the Lon field on the form
var msgText = "";// Message text to display at bottom of page
var actionOp = "";// Action to perform after successful operation
var zoomToLat = 0.0;// Lat to zoom to, used for Find operation.
var zoomToLon = 0.0;// Lon to zoom to, used for Find operation.

// Now, use the SDF Component Toolkit commands to drive the controls.
// This code is all wrapped within an if statement that verifies
// whether a valid command (add, find, or remove) has been issued
// before it creates an instance of the SDF Component Toolkit.
if (op == "Add" || op == "Find" || op == "Remove")
{

pointName = Request.Form("pointName");

Map.htm (continued)
140 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

For mo
In the SD
Toolkit H
SdfOpen

For mo
In the SD
Toolkit H
object m
if (pointName != "")
{

// Create an instance of the SDF Component Toolkit
var sdfToolKit = Server.CreateObject("Autodesk.MgSdfToolkit.1");

// If the command is Add or Remove, open the SDF for read/write.
// If the command is Find, open the SDF as read-only.
if (op == "Add" || op == "Remove")
{

//Use the constants "32 | 2" to indicate sdfOpenUpdate and
//sdfOpenExisting. These constants open for read/write and
//report errors if the file doesn’t exist.
sdfToolKit.Open("c:\\sdf\\poi.sdf", 32 | 2, true);

if (op == "Add") //add the point
{

pointLat = parseFloat(Request.Form("pointLat"));
pointLon = parseFloat(Request.Form("pointLon"));

// Set up the variables for building the point. A point
// in the SDF Component Toolkit follows the object
// hierarchy (in shorthand) of
// object.geometry.segment.point.
// Proceed only if the lat and lon values are valid.
if (!isNaN(pointLat) && !isNaN(pointLon))
{

var sdfObject =
Server.CreateObject("Autodesk.MgSdfObject.1");

var sdfGeometry =
Server.CreateObject("Autodesk.MgSdfObjectGeome-

try.1");
var sdfSegment =

Server.CreateObject("Autodesk.MgSdfObjectGeometry-
Segment.1");

var sdfPoint =
Server.CreateObject("Autodesk.MgSdfDoublePoint.1");

// Now build the point into an SDF object. Use the text
// in the Name field for both the name and the key;
// leave the URL empty.
sdfPoint.SetCoordinates(pointLat, pointLon);
sdfSegment.Add(sdfPoint);
sdfGeometry.Add(sdfSegment);
sdfObject.SetGeometry(0, sdfGeometry);
sdfObject.Name = pointName;
sdfObject.Key = pointName;
sdfObject.Url = "";

// The object is built. Now add it to the SDF.
sdfToolKit.BeginUpdate();

Poi.ASP (continued)

re info...
F Component

elp, look up:
Flags constants

re info...
F Component

elp, look up:
odel
Updating SDF Files via the Map | 141

sdfToolKit.AddObject(sdfObject);
sdfToolKit.EndUpdate();

clearVars();
actionOp = "UpdateMap";
msgText = "Point added, updating map.";

}
else // Invalid lat/lon values

msgText = "Lat and Lon floating point quantities must
be specified."

}
else //if not the Add command, remove the point
{

var sdfObject = findObject(sdfToolKit, pointName);

if (sdfObject != null)
{

sdfToolKit.BeginUpdate();
sdfToolKit.DeleteObject(sdfObject);
sdfToolKit.EndUpdate();

clearVars();
actionOp = "UpdateMap"; // Refreshes the map
msgText = "Point removed, updating map.";

}
else

msgText = "Point not found.";
}

}
//If it's the Find command, open the SDF as read-only by setting
//the second parameter to 1 (sdfOpenRead) instead of 2
//(sdfOpenUpdate).
else if (op == "Find")
{

var sdfObject = null;

sdfToolKit.Open("c:\\sdf\\poi.sdf", 1, true);
sdfObject = findObject(sdfToolKit, pointName);

if (sdfObject != null)
{

var sdfPoint = sdfObject.Geometry.GetAt(0).GetAt(0);
zoomToLon = sdfPoint.X;
zoomToLat = sdfPoint.Y;
clearVars();
actionOp = "ZoomToPoint"; // Zooms to the point on the map
msgText = "Zooming to point.";

}
else

Poi.ASP (continued)
142 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

msgText = "Point not found.";
}
sdfToolKit.Close();

}
else

msgText = "A name must be specified."
}
else if (Request.Count > 0)

msgText = "Unrecognized command.";
%>

<%
function findObject(openSdf, objKey) // The actual search
{

var sdfObject = null;

openSdf.BeginKeyIndexSearch(objKey);
sdfObject = openSdf.SearchToNextObject();
openSdf.EndSearch();

return sdfObject;
}

function clearVars()
{

pointName = "";
pointLat = "";
pointLon = "";
op = "";

}
%>

// This next section creates the content of the frame.
<H2>Points of Interest</H2>
<HR>
<FORM METHOD="POST" NAME="pointForm" TARGET="_self"

ACTION="poi.asp">
<INPUT TYPE="hidden" NAME="op" VALUE="None">
<DIV ALIGN="left">
<P>
<LABEL FOR="fp1">Name
</LABEL>
<INPUT TYPE="text" NAME="pointName" VALUE="<%=pointName%>"

SIZE="20" maxlength="255" ID="fp1">
</P>
</DIV>
<DIV ALIGN="left">
<P>
<LABEL FOR="fp2">Latitude
</LABEL>
<INPUT TYPE="text" NAME="pointLat" VALUE="<%=pointLat%>"

Poi.ASP (continued)
Updating SDF Files via the Map | 143

SIZE="12" ID="fp2">
</P>
</DIV>
<DIV ALIGN="left">
<P>
<LABEL FOR="fp3">Longitude
</LABEL>
<INPUT TYPE="text" NAME="pointLon" VALUE="<%=pointLon%>"

SIZE="12" ID="fp3">
</P>
</DIV>
<P>
<INPUT TYPE="button" VALUE="Digitize" NAME="digitizePoint"

LANGUAGE="JavaScript" ONCLICK="digitizeIt()">
</P>
<HR>
<P>
<INPUT TYPE="button" WIDTH="50" VALUE="Add" NAME="addPoint"

WIDTH="50" LANGUAGE="JavaScript"
ONCLICK="pointForm.op.value='Add'; pointForm.submit()">

<INPUT TYPE="button" WIDTH="50" VALUE="Find" NAME="findPoint"
LANGUAGE="JavaScript"
ONCLICK="pointForm.op.value='Find'; pointForm.submit()">

<INPUT TYPE="button" WIDTH="50" VALUE="Remove"
NAME="removePoint" LANGUAGE="JavaScript"
ONCLICK="pointForm.op.value = 'Remove'; pointForm.submit()">

</P>
</FORM>
<HR>
<%=msgText%>

<SCRIPT LANGUAGE="JavaScript">
// Determine browser...
bName = navigator.appName;
bVer = parseInt(navigator.appVersion);

if (bName == "Netscape" && bVer >= 4)
ver = "n4";

else if (bName == "Microsoft Internet Explorer" && bVer >= 4)
ver = "e4";

else
ver = "other";

function getThisMap()
{

if (ver == "n4")
return parent.mapFrame.document.map;

else
return parent.mapFrame.map;

}

Poi.ASP (continued)
144 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

// Following is the function called by the Digitize button. If the
// browser is Navigator, it will send the onDigitizedPoint event to
// the MapGuideObserver5.class observer (the “obs” variable). If the
// browser is Internet Explorer, it will know to look for an observer
// method with the same name as the event, which we defined with
// VBScript in map.htm.
function digitizeIt()
{

if (ver == "n4")
getThisMap().digitizePoint(parent.mapFrame.document.obs);

else
getThisMap().digitizePoint();

}

function updateMap() // Updates the map after an Add or Remove
{

getThisMap().getMapLayer("POI").setRebuild(true);
getThisMap().refresh();

}

function zoomToPoint() // Zooms to the point after a Find
{

getThisMap().zoomWidth(<%=zoomToLat%>, <%=zoomToLon%>, 1000, "Mi");
getThisMap().refresh();

}
</SCRIPT>

<%
//When the resulting HMTL loads in the browser, these last few lines
//of ASP code call updateMap() or zoomToPoint(), depending on the
//operation performed when the ASP was executed.

if (actionOp == "UpdateMap")
{

Response.Write("<SCRIPT LANGUAGE=\"JavaScript\">");
Response.Write("updateMap();");
Response.Write("</SCRIPT>");

}
else if (actionOp == "ZoomToPoint")
{

Response.Write("<SCRIPT LANGUAGE=\"JavaScript\">");
Response.Write("zoomToPoint();");
Response.Write("</SCRIPT>");

}
%>

</BODY>
</HTML>

Poi.ASP (continued)
Updating SDF Files via the Map | 145

Once you understand the object hierarchy, using the SDF Component
Toolkit is very straightforward. This example used ASP, but you can apply
similar techniques using ColdFusion or another language. Please go to the
customer sites pages (www.autodesk.com/mapguidedemo) to see more applica-
tions and add your own applications to share with others.

Visual Basic Examples

The rest of this chapter contains three applications written in Visual Basic.
They illustrate the following tasks:

� Converting an SDF file
� Getting information about an SDF file
� Copying an SDF file

Converting To an SDF File

The ConvertSDF example shows how to implement a proprietary data con-
verter. This code accesses a text file that contains necessary coordinate infor-
mation and other attributes for SDF objects and creates an SDF file from it.

Converting To an SDF File

VERSION 5.00
Object = "{3B7C8863-D78F-101B-B9B5-04021C009402}#1.2#0";
"RICHTX32.OCX"
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0";
"comdlg32.ocx"
Begin VB.Form frmLab2
 Caption = "Form1"
 ClientHeight = 3360
 ClientLeft = 48
 ClientTop = 276
 ClientWidth = 5820
 LinkTopic = "Form1"
 ScaleHeight = 3360
 ScaleWidth = 5820
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton btnDelete
 Cancel = -1 'True
 Caption = "Delete Feature"
 Height = 288
 Left = 4440
 TabIndex = 7
 Top = 1320
 Width = 1212
146 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

 End
 Begin VB.CommandButton btnConvert
 Caption = "Convert"
 Height = 288
 Left = 4440
 TabIndex = 6
 Top = 960
 Width = 1212
 End
 Begin VB.CommandButton btnBrowseTxt
 Caption = "Browse"
 Height = 288
 Left = 4440
 TabIndex = 5
 Top = 120
 Width = 1212
 End
 Begin VB.TextBox txtTxtName
 Height = 288
 Left = 120
 TabIndex = 4
 Text = "d:\work\mapguide\water.txt"
 Top = 120
 Width = 4212
 End
 Begin VB.CommandButton btnExit
 Caption = "Exit"
 Height = 288
 Left = 4440
 TabIndex = 3
 Top = 3000
 Width = 1212
 End
 Begin MSComDlg.CommonDialog cdOpen
 Left = 4920
 Top = 2520
 _ExtentX = 677
 _ExtentY = 677
 _Version = 393216
 CancelError = -1 'True
 DialogTitle = "Open SDF File"
 Filter = "SDF Files (*.sdf) | *.sdf"
 FilterIndex = 1
 End
 Begin VB.TextBox txtSdfName
 Height = 288
 Left = 120
 TabIndex = 2
 Text = "d:\work\mapguide\water.sdf"

Converting To an SDF File (continued)
Visual Basic Examples | 147

 Top = 480
 Width = 4212
 End
 Begin VB.CommandButton btnBrowseSdf
 Caption = "Browse"
 Height = 288
 Left = 4440
 TabIndex = 1
 Top = 480
 Width = 1212
 End
 Begin RichTextLib.RichTextBox txtMsg
 Height = 2292
 Left = 120
 TabIndex = 0
 Top = 960
 Width = 4212
 _ExtentX = 7430
 _ExtentY = 4043
 _Version = 393217
 Enabled = -1 'True
 ReadOnly = -1 'True
 ScrollBars = 2
 TextRTF = $"frmLab2.frx":0000
 BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
 Name = "Courier New"
 Size = 7.8
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 End
End
Attribute VB_Name = "frmLab2"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub btnBrowseSdf_Click()
On Error GoTo ErrHandler

 cdOpen.Filter = "SDF Files (*.SDF)| *.SDF"
 cdOpen.FilterIndex = 1
 cdOpen.DialogTitle = "Save SDF File"
 'Show the open dialog box

Converting To an SDF File (continued)
148 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

 cdOpen.ShowSave
 txtSdfName.Text = cdOpen.FileName

ErrHandler:
 'Cancel was selected
 'Just exit after resetting errhandler
 On Error GoTo 0
End Sub

Private Sub btnBrowseTxt_Click()
On Error GoTo ErrHandler

 cdOpen.Filter = "Text Files (*.TXT)| *.TXT"
 cdOpen.FilterIndex = 1
 cdOpen.DialogTitle = "Open SDF File"

 'Show the open dialog box
 cdOpen.ShowOpen
 txtTxtName.Text = cdOpen.FileName

ErrHandler:
 'Cancel was selected
 'Just exit after resetting errhandler
 On Error GoTo 0
End Sub

Private Sub btnConvert_Click()
 'Check if there is a file name in edit boxes
 If (txtSdfName.Text = "") Or (txtTxtName.Text = "") Then
 ShowMessage ("Select the TXT and SDF files first!")
 Exit Sub
 End If

 Dim oTlkt As New SdfToolkit
 Dim oObj As New SdfObject
 Dim oGeom As New SdfObjectGeometry
 Dim oSeg As New SdfObjectGeometrySegment
 Dim oPnt As New SdfDoublePoint
 Dim strMsg As String
 Dim strObjType As String, strKey As String, strName As String,
strUrl As String, strCnt As String
 Dim X As Double, Y As Double
 Dim i As Long, j As Long

On Error GoTo ErrHandler

 'Open the input text file
 Open txtTxtName.Text For Input As #1
 'Open the sdf file in read-only mode

Converting To an SDF File (continued)
Visual Basic Examples | 149

 oTlkt.Open txtSdfName.Text, sdfOpenUpdate Or sdfCreateAlways,
True

 'Indicate update process
 oTlkt.BeginUpdate
 j = 0
 'Read from txt file till eof
 Do While Not EOF(1)
 'Get the feature data
 Line Input #1, strObjType
 Line Input #1, strKey 'Key
 Line Input #1, strName 'Name
 Line Input #1, strUrl 'Url
 Line Input #1, strCnt 'Vertex count

 'Read the geometry
 For i = 1 To Val(strCnt)
 Input #1, X
 Input #1, Y
 'Prepare a point feature
 oPnt.SetCoordinates X, Y
 'Add this point into the segment
 oSeg.Add oPnt
 Next i
 'Now add this segment into the geometry
 oGeom.Add oSeg
 'Put this geometry into the feature
 If strObjType = "POLYGON" Then
 oObj.SetGeometry sdfPolygonObject, oGeom
 ElseIf strObjType = "POLYLINE" Then
 oObj.SetGeometry sdfPolylineObject, oGeom
 ElseIf strObjType = "POINT" Then
 oObj.SetGeometry sdfPointObject, oGeom
 Else
 ShowMessage "Unknown feature in input file."
 End If

 'Set the feature properties
 oObj.Key = Trim(strKey)
 oObj.Name = Trim(strName)
 oObj.Url = Trim(strUrl)

 'Add this feature to the SDF file
 oTlkt.AddObject oObj
 j = j + 1

 'Clear the geometry before next use
 oGeom.RemoveAll
 oSeg.RemoveAll
 Loop

Converting To an SDF File (continued)
150 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

 'Wind up
 oTlkt.EndUpdate
 oTlkt.Close
 Close #1

 ShowMessage txtTxtName.Text & " converted to " & txtSdfName.Text
 ShowMessage "Total features converted: " & j
 Exit Sub

ErrHandler:
 'Display the error number/message
 MsgBox Err.Number & " : " & Err.Description
 'Reset the handler before exiting
 On Error GoTo 0

End Sub

Private Sub btnDelete_Click()
 'Check if there is a file name in edit box
 If txtSdfName.Text = "" Then
 ShowMessage ("Select an SDF file first!")
 Exit Sub
 End If

 Dim Key As String

 'Get the key from
 Key = InputBox("Enter the key of the feature to be deleted: ",

"Key Input", "Lake")
 If Key = "" Then
 Exit Sub
 End If

 Dim oTlkt As New SdfToolkit
 Dim oBox As SdfBoundingBox
 Dim oObj As SdfObject
 Dim strMsg As String
 Dim i As Long
 Dim objFound As Boolean

On Error GoTo ErrHandler

 'Open the sdf file in read-only mode
 oTlkt.Open txtSdfName.Text, sdfOpenUpdate Or sdfOpenExisting,
True
 'Begin spatial search for polylines
 oTlkt.BeginKeyIndexSearch (Key)

Converting To an SDF File (continued)
Visual Basic Examples | 151

 'Get first feature having key
 Set oObj = oTlkt.SearchToNextObject()
 'End search
 oTlkt.EndSearch

 objFound = Not (oObj Is Nothing)
 If Not (oObj Is Nothing) Then
 ShowMessage "Following feature is deleted"
 ShowMessage "Feature: " & i & " " & GetObjectTypeS-

tring(oObj.Type)
 ShowMessage " Key : " & oObj.Key
 ShowMessage " Name: " & oObj.Name
 ShowMessage " Url : " & oObj.Url
 'Delete this feature
 oTlkt.BeginUpdate
 oTlkt.DeleteObject oObj
 oTlkt.EndUpdate
 End If

 'If we come here, feature with specified key was not found
 If Not objFound Then
 ShowMessage ("Feature with specified key not found.")
 Else
 ShowMessage ("Feature with key " & Key & " deleted.")
 End If

 oTlkt.Close

 Exit Sub

ErrHandler:
 'Display the error number/message
 MsgBox Err.Number & " : " & Err.Description
 'Reset the handler before exiting
 On Error GoTo 0
End Sub

Private Sub btnExit_Click()
 End
End Sub

Sub ShowMessage(Msg As String)

 txtMsg.Text = txtMsg.Text & Msg & vbCrLf

End Sub

Converting To an SDF File (continued)
152 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

Getting Information about an SDF File

The SDFInfo example code shows how to open and access an SDF file to
retrieve its information, such as precision, key length, bounding box, etc. It
also shows how to search for features within the SDF file using sequential
search, spatial search, and key-indexed search.

Function GetObjectTypeString(ObjType As SdfObjectType) As String
 Select Case ObjType
 Case sdfPointObject:
 GetObjectTypeString = "POINT"
 Case sdfPolygonObject:
 GetObjectTypeString = "POLYGON"
 Case sdfPolylineObject:
 GetObjectTypeString = "POLYLINE"
 Case sdfPolyPolylineObject:
 GetObjectTypeString = "POLYPOLYLINE"
 Case sdfPolyPolygonObject:
 GetObjectTypeString = "POLYPOLYGON"
 End Select

End Function

Getting Information About an SDF File

VERSION 5.00
Object = "{3B7C8863-D78F-101B-B9B5-04021C009402}#1.2#0";
"RICHTX32.OCX"
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0";
"comdlg32.ocx"
Begin VB.Form frmLab1
 Caption = "Form1"
 ClientHeight = 3360
 ClientLeft = 48
 ClientTop = 276
 ClientWidth = 5820
 LinkTopic = "Form1"
 ScaleHeight = 3360
 ScaleWidth = 5820
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton btnExit
 Caption = "Exit"
 Height = 288
 Left = 4440
 TabIndex = 7
 Top = 3000
 Width = 1212
 End

Converting To an SDF File (continued)
Visual Basic Examples | 153

 Begin VB.CommandButton btnSrchKey
 Caption = "Key Search"
 Height = 288
 Left = 4440
 TabIndex = 6
 Top = 1800
 Width = 1212
 End
 Begin VB.CommandButton btnSrchSpat
 Caption = "Spatial Search"
 Height = 288
 Left = 4440
 TabIndex = 5
 Top = 1440
 Width = 1212
 End
 Begin VB.CommandButton btnSrchSeq
 Caption = "Seq Search"
 Height = 288
 Left = 4440
 TabIndex = 4
 Top = 1080
 Width = 1212
 End
 Begin VB.CommandButton btnShowInfo
 Caption = "Show Info"
 Height = 288
 Left = 4440
 TabIndex = 3
 Top = 720
 Width = 1212
 End
 Begin MSComDlg.CommonDialog cdOpen
 Left = 4920
 Top = 2280
 _ExtentX = 677
 _ExtentY = 677
 _Version = 393216
 CancelError = -1 'True
 DialogTitle = "Open SDF File"
 Filter = "SDF Files (*.sdf) | *.sdf"
 FilterIndex = 1
 End
 Begin VB.TextBox txtSdfName
 Height = 288
 Left = 120
 TabIndex = 2
 Text = "d:\work\mapguide\redline.sdf"
 Top = 120

Getting Information About an SDF File (continued)
154 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

 Width = 4212
 End
 Begin VB.CommandButton btnBrowse
 Caption = "Browse"
 Height = 288
 Left = 4440
 TabIndex = 1
 Top = 120
 Width = 1212
 End
 Begin RichTextLib.RichTextBox txtMsg
 Height = 2652
 Left = 120
 TabIndex = 0
 Top = 600
 Width = 4212
 _ExtentX = 7430
 _ExtentY = 4678
 _Version = 393217
 Enabled = -1 'True
 ReadOnly = -1 'True
 ScrollBars = 2
 TextRTF = $"frmLab1.frx":0000
 BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
 Name = "Courier New"
 Size = 7.8
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 End
End
Attribute VB_Name = "frmLab1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub btnBrowse_Click()
On Error GoTo ErrHandler

 'Show the open dialog box
 cdOpen.ShowOpen
 txtSdfName.Text = cdOpen.FileName
ErrHandler:
 'Cancel was selected

Getting Information About an SDF File (continued)
Visual Basic Examples | 155

 'Just exit after resetting errhandler
 On Error GoTo 0
End Sub

Private Sub btnExit_Click()
 End
End Sub

Private Sub btnShowInfo_Click()

 'Check if there is a file name in edit box
 If txtSdfName.Text = "" Then
 ShowMessage ("Select an SDF file first!")
 Exit Sub
 End If

 Dim oTlkt As New SdfToolkit
 Dim oBox As SdfBoundingBox
 Dim strMsg As String

On Error GoTo ErrHandler

 'Open the sdf file in read-only mode
 oTlkt.Open txtSdfName.Text, sdfOpenRead, True

 'Get SDF name
 strMsg = oTlkt.Name
 ShowMessage "SDF File opened: " & strMsg

 'Get description
 strMsg = oTlkt.Description
 ShowMessage "Description: " & strMsg

 'Get precision
 strMsg = oTlkt.Precision
 ShowMessage "Precision: " & strMsg & " bit"

 'Get key length
 strMsg = oTlkt.MaxKeyLength
 ShowMessage "Max Key length: " & strMsg

 'Get version
 strMsg = oTlkt.Version
 ShowMessage "Version: " & strMsg

 'Get extents
 strMsg = "Min LAT: " & oTlkt.BoundingBox.minY & vbCrLf & _
 "Min LON: " & oTlkt.BoundingBox.minX & vbCrLf & _

Getting Information About an SDF File (continued)
156 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

 "Max LAT: " & oTlkt.BoundingBox.maxY & vbCrLf & _
 "Max LON: " & oTlkt.BoundingBox.maxX

 ShowMessage "SDF Extents: " & vbCrLf & strMsg

 'Get total count of features
 strMsg = oTlkt.TotalObjects
 ShowMessage "Total features: " & strMsg

 'Check for feature classes present in this sdf
 ShowMessage "Contains Points: " & oTlkt.ContainsObjectClass(sd-

fPointClass)
 ShowMessage "Contains Polylines: " & oTlkt.ContainsObject-

Class(sdfPolylineClass)
 ShowMessage "Contains Polygons: " & oTlkt.ContainsObject-

Class(sdfPolygonClass)

 'Close the toolkit
 oTlkt.Close

 Exit Sub

ErrHandler:
 'Display the error number/message
 MsgBox Err.Number & " : " & Err.Description
 'Reset the handler before exiting
 On Error GoTo 0
End Sub

Private Sub btnSrchKey_Click()
'Check if there is a file name in edit box
 If txtSdfName.Text = "" Then
 ShowMessage ("Select an SDF file first!")
 Exit Sub
 End If

 Dim Key As String

 'Get the key from
 Key = InputBox("Enter the key of the feature: ", "Key Input",
"RedLine[144.111.8.96]")
 If Key = "" Then
 Exit Sub
 End If

 Dim oTlkt As New SdfToolkit
 Dim oBox As SdfBoundingBox
 Dim oObj As SdfObject

Getting Information About an SDF File (continued)
Visual Basic Examples | 157

 Dim strMsg As String
 Dim i As Long
 Dim objFound As Boolean

On Error GoTo ErrHandler

 'Open the sdf file in read-only mode
 oTlkt.Open txtSdfName.Text, sdfOpenRead, True

 'Begin spatial search for polylines
 oTlkt.BeginKeyIndexSearch (Key)

 'Get first feature
 Set oObj = oTlkt.SearchToNextObject()
 objFound = Not (oObj Is Nothing)
 i = 1

 Do While Not (oObj Is Nothing)
 ShowMessage "Feature: " & i & " " & GetObjectTypeS-
tring(oObj.Type)
 ShowMessage " Key : " & oObj.Key
 ShowMessage " Name: " & oObj.Name
 ShowMessage " Url : " & oObj.Url
 Set oObj = oTlkt.SearchToNextObject()
 i = i + 1
 DoEvents
 Loop

 'If we come here, feature with specified key was not found
 If Not objFound Then
 ShowMessage ("Feature with specified key not found.")
 Else
 ShowMessage (i - 1 & " features with key " & Key & " found.")
 End If

 'Close the toolkit
 oTlkt.EndSearch
 oTlkt.Close

 Exit Sub

ErrHandler:
 'Display the error number/message
 MsgBox Err.Number & " : " & Err.Description
 'Reset the handler before exiting
 On Error GoTo 0
End Sub

Getting Information About an SDF File (continued)
158 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

Private Sub btnSrchSeq_Click()
'Check if there is a file name in edit box
 If txtSdfName.Text = "" Then
 ShowMessage ("Select an SDF file first.")
 Exit Sub
 End If

 Dim oTlkt As New SdfToolkit
 Dim oObj As SdfObject
 Dim strMsg As String
 Dim i As Long

On Error GoTo ErrHandler

 'Open the sdf file in read-only mode
 oTlkt.Open txtSdfName.Text, sdfOpenRead, True

 'Begin sequential search
 oTlkt.BeginSequentialSearch

 'Get first feature
 Set oObj = oTlkt.SearchToNextObject()

 i = 1
 While Not (oObj Is Nothing)
 ShowMessage "Feature: " & i & " " & GetObjectTypeS-
tring(oObj.Type)
 ShowMessage " Key: " & oObj.Key
 ShowMessage " Name: " & oObj.Name
 ShowMessage " Url: " & oObj.Url
 Set oObj = oTlkt.SearchToNextObject()
 i = i + 1
 DoEvents
 Wend

 'Close the toolkit
 oTlkt.EndSearch
 oTlkt.Close

 Exit Sub

ErrHandler:
 'Display the error number/message
 MsgBox Err.Number & " : " & Err.Description
 'Reset the handler before exiting
 On Error GoTo 0
End Sub

Getting Information About an SDF File (continued)
Visual Basic Examples | 159

Private Sub btnSrchSpat_Click()
'Check if there is a file name in edit box
 If txtSdfName.Text = "" Then
 ShowMessage ("Select an SDF file first!")
 Exit Sub
 End If

 Dim oTlkt As New SdfToolkit
 Dim oBox As SdfBoundingBox
 Dim oObj As SdfObject
 Dim strMsg As String
 Dim i As Long

On Error GoTo ErrHandler

 'Open the sdf file in read-only mode
 oTlkt.Open txtSdfName.Text, sdfOpenRead, True

 'Get the SDF extents
 Set oBox = oTlkt.BoundingBox

 'Begin spatial search for polylines
 oTlkt.BeginSpatialIndexSearch sdfPolylineClass, oBox

 'Get first feature
 Set oObj = oTlkt.SearchToNextObject()

 i = 1

 While Not (oObj Is Nothing)
 ShowMessage "Feature: " & i & " " & GetObjectTypeS-
tring(oObj.Type)
 ShowMessage " Key: " & oObj.Key
 ShowMessage " Name: " & oObj.Name
 ShowMessage " Url: " & oObj.Url
 Set oObj = oTlkt.SearchToNextObject()
 i = i + 1
 DoEvents
 Wend

 'Close the toolkit
 oTlkt.EndSearch
 oTlkt.Close

 Exit Sub
ErrHandler:
 'Display the error number/message

Getting Information About an SDF File (continued)
160 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

Copying an SDF File

The CopySDF example shows how to open an existing SDF file and write its
features to a new SDF file.

 MsgBox Err.Number & " : " & Err.Description
 'Reset the handler before exiting
 On Error GoTo 0
End Sub

Sub ShowMessage(Msg As String)

 txtMsg.Text = txtMsg.Text & Msg & vbCrLf

End Sub

Function GetObjectTypeString(ObjType As SdfObjectType) As String
 Select Case ObjType
 Case sdfPointObject:
 GetObjectTypeString = "POINT"
 Case sdfPolygonObject:
 GetObjectTypeString = "POLYGON"
 Case sdfPolylineObject:
 GetObjectTypeString = "POLYLINE"
 Case sdfPolyPolylineObject:
 GetObjectTypeString = "POLYPOLYLINE"
 Case sdfPolyPolygonObject:
 GetObjectTypeString = "POLYPOLYGON"
 End Select

End Function

Copying an SDF File

VERSION 5.00
Object = "{3B7C8863-D78F-101B-B9B5-04021C009402}#1.2#0";
"RICHTX32.OCX"
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0";
"comdlg32.ocx"
Begin VB.Form frmLab2
 Caption = "Form1"
 ClientHeight = 3360
 ClientLeft = 48
 ClientTop = 276
 ClientWidth = 5820
 LinkTopic = "Form1"

Getting Information About an SDF File (continued)
Visual Basic Examples | 161

 ScaleHeight = 3360
 ScaleWidth = 5820
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton btnCopy
 Caption = "Copy"
 Height = 288
 Left = 4440
 TabIndex = 6
 Top = 960
 Width = 1212
 End
 Begin VB.CommandButton btnBrowseInSdf
 Caption = "Browse"
 Height = 288
 Left = 4440
 TabIndex = 5
 Top = 120
 Width = 1212
 End
 Begin VB.TextBox sdfInName
 Height = 288
 Left = 120
 TabIndex = 4
 Text = "d:\work\mapguide\redline.sdf"
 Top = 120
 Width = 4212
 End
 Begin VB.CommandButton btnExit
 Caption = "Exit"
 Height = 288
 Left = 4440
 TabIndex = 3
 Top = 3000
 Width = 1212
 End
 Begin MSComDlg.CommonDialog cdOpen
 Left = 4920
 Top = 2520
 _ExtentX = 677
 _ExtentY = 677
 _Version = 393216
 CancelError = -1 'True
 DialogTitle = "Open SDF File"
 Filter = "SDF Files (*.sdf) | *.sdf"
 FilterIndex = 1
 End
 Begin VB.TextBox sdfOutName
 Height = 288
 Left = 120

Copying an SDF File (continued)
162 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

 TabIndex = 2
 Text = "d:\work\mapguide\redline1.sdf"
 Top = 480
 Width = 4212
 End
 Begin VB.CommandButton btnBrowseOutSdf
 Caption = "Browse"
 Height = 288
 Left = 4440
 TabIndex = 1
 Top = 480
 Width = 1212
 End
 Begin RichTextLib.RichTextBox txtMsg
 Height = 2292
 Left = 120
 TabIndex = 0
 Top = 960
 Width = 4212
 _ExtentX = 7430
 _ExtentY = 4043
 _Version = 393217
 Enabled = -1 'True
 ReadOnly = -1 'True
 ScrollBars = 2
 TextRTF = $"frmLab3.frx":0000
 BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
 Name = "Courier New"
 Size = 7.8
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 End
End
Attribute VB_Name = "frmLab2"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub btnBrowseInSdf_Click()
On Error GoTo ErrHandler

 cdOpen.Filter = "Text Files (*.SDF)| *.SDF"
 cdOpen.FilterIndex = 1

Copying an SDF File (continued)
Visual Basic Examples | 163

 cdOpen.DialogTitle = "Open SDF File"

 'Show the open dialog box
 cdOpen.ShowOpen
 sdfInName.Text = cdOpen.FileName

ErrHandler:
 'Cancel was selected
 'Just exit after resetting errhandler
 On Error GoTo 0
End Sub

Private Sub btnBrowseOutSdf_Click()
On Error GoTo ErrHandler

 cdOpen.Filter = "SDF Files (*.SDF)| *.SDF"
 cdOpen.FilterIndex = 1
 cdOpen.DialogTitle = "Save SDF File"

 'Show the open dialog box
 cdOpen.ShowSave
 sdfOutName.Text = cdOpen.FileName

ErrHandler:
 'Cancel was selected
 'Just exit after resetting errhandler
 On Error GoTo 0
End Sub

Private Sub btnCopy_Click()
Dim msg As String

 'Check for filenames
 If (sdfInName.Text = "") Or (sdfOutName.Text = "") Then
 ShowMessage "You must select filenames first.'"
 Exit Sub
 End If

 Dim oTlktIn As New SdfToolkit
 Dim oTlktOut As New SdfToolkit
 Dim oObj As SdfObject
 Dim oBox As New SdfBoundingBox
 Dim xMin As Double, yMin As Double, xMax As Double, yMax As Double
 Dim i As Long

On Error GoTo ErrHandler

 'Open the input sdf file in readonly mode
 oTlktIn.Open sdfInName, sdfOpenRead, True

Copying an SDF File (continued)
164 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

 'Open the output sdf file for write/append mode
 oTlktOut.Open sdfOutName, sdfOpenUpdate Or sdfOpenAlways, True

 'Get insdf's extents
 Set oBox = oTlktIn.BoundingBox
 Debug.Print oBox.MinX, oBox.MinY, oBox.MaxX, oBox.MaxY

 'Set up search area that is 1/3 of input sdf
 xMin = oBox.MinX + Abs((Abs(oBox.MaxX) - Abs(oBox.MinX)) / 3)
 xMax = oBox.MaxX - Abs((Abs(oBox.MaxX) - Abs(oBox.MinX)) / 3)
 yMin = oBox.MinY + Abs((Abs(oBox.MaxY) - Abs(oBox.MinY)) / 3)
 yMax = oBox.MaxY - Abs((Abs(oBox.MaxY) - Abs(oBox.MinY)) / 3)
 oBox.SetExtent xMin, yMin, xMax, yMax

 'Start searching from insdf and writing to outsdf

 oTlktIn.BeginSpatialIndexSearch sdfAllObjectClasses, oBox
 oTlktOut.BeginUpdate

 Set oObj = oTlktIn.SearchToNextObject

 i = 0
 Do While Not (oObj Is Nothing)
 oTlktOut.AddObject oObj
 i = i + 1
 Set oObj = oTlktIn.SearchToNextObject
 Loop

 'Wind up
 oTlktIn.EndSearch
 oTlktOut.EndUpdate
 oTlktIn.Close
 oTlktOut.Close

 ShowMessage sdfInName.Text & " copied to " & sdfOutName.Text
 ShowMessage "Total features written: " & i

 Exit Sub

ErrHandler:
 'Display the error number/message
 MsgBox Err.Number & " : " & Err.Description
 'Reset the handler before exiting
 On Error GoTo 0
End Sub

Copying an SDF File (continued)
Visual Basic Examples | 165

Private Sub btnExit_Click()
 End
End Sub

Sub ShowMessage(msg As String)

 txtMsg.Text = txtMsg.Text & msg & vbCrLf

End Sub

Function GetObjectTypeString(ObjType As SdfObjectType) As String
 Select Case ObjType
 Case sdfPointObject:
 GetObjectTypeString = "POINT"
 Case sdfPolygonObject:
 GetObjectTypeString = "POLYGON"
 Case sdfPolylineObject:
 GetObjectTypeString = "POLYLINE"
 Case sdfPolyPolylineObject:
 GetObjectTypeString = "POLYPOLYLINE"
 Case sdfPolyPolygonObject:
 GetObjectTypeString = "POLYPOLYGON"
 End Select

End Function

Copying an SDF File (continued)
166 | Chapter 5 Using the SDF Component Toolkit to Modify Spatial Data

Index

A
Active Server Pages (ASP)

about 79, 102
creating reports with 102
querying and updating data with 6

ActiveX Control version of the Autodesk
MapGuide Viewer

detecting with CODEBASE parameter 21
displaying the map in 12

Allaire ColdFusion
about 79
creating reports with 55, 59, 62, 77, 78
querying and updating data with 6, 77

annotations
see redlining

API
see Autodesk MapGuide Viewer

API
ASP

see Active Server Pages (ASP)
attribute data

displaying for selected features (reports) 77,
78

listing with ColdFusion 81, 83
updating dynamically 78, 94, 119

Autodesk MapGuide Author
creating popup menus with 100, 126
creating reports with 83, 94, 108, 119

Autodesk MapGuide development
introduction 5–8

Autodesk MapGuide LiteView Extension 14
Autodesk MapGuide SDF Component Toolkit

129–166
Autodesk MapGuide Server

and SDF file access 134
security 27
URL of your 12, 14

Autodesk MapGuide Viewer
ActiveX Control 12
API

accessing maps with 15
accessing reports with 90, 101, 115,

127
adding map layers 32
advanced examples 49, 136
autoRefresh flag 24
busy state 23

Autodesk MapGuide Viewer API
API (continued)

counting map features 42
counting map layers 30
customizing the printout 44–49
developing with 9–27, 29–76
display refresh 23
error checking 26
events

about 18
example of 20
handlers and observers 18
Internet Explorer and 19
Netscape Navigator and 19

examples of common tasks 30
linking map layers 33
listing map layers 31
radius mode 39
retrieving feature coordinates 37
retrieving feature keys 35
security 26
toggling map layer visibility 40
zooming to selected features 41

creating an application 11
Java Edition 14
LiteView Extension 14
Plug-In 12

B
busy state, handling 23

C
CFM files 81, 83, 94
CODEBASE parameter

detecting ActiveX Control with 21
ColdFusion

about 79, 80
creating reports with 55, 59, 62, 77, 78, 80
listing database contents with 81, 83, 94
querying and updating data with 6, 77
template files 81, 83, 94

coordinates
retrieving with the API 37

counting
map features with the API 42
map layers with the API 30
Index | 167

custom applications
creating with the Viewer API 9–27, 29–76

D
data

attribute
listing with ColdFusion 81, 83
updating dynamically 78, 94, 119

reports 77, 78
databases

listing contents with ColdFusion 81, 83, 94
updating via the map 78, 94, 119

debugging 26
digitizing

circles 39
points 53

display refresh, controlling 23
displaying the map 11
DSNs

working with 81, 94, 105, 108, 119
see also OLE DB

E
embedding MWFs in HTML pages 12
events, API 18

F
facilities management

sample application 69
files and directories

.asp 105, 108, 119

.cfm 81, 83, 94

.kif 133

.sdf 129–166

.sif 133

H
HTML pages

creating 82, 86, 95, 107, 111, 120

I
Internet Explorer

accessing map object from 15
and observer objects 17
embedding a map 13
event observers in 19–21
JavaScript support in 15
JavaScript/JScript support in 17

introduction to Autodesk MapGuide
development 5–8

J
Java edition of the Autodesk MapGuide Viewer

API for the 17
displaying the map in 14

JavaScript
accessing reports with 90, 101, 115, 127

JavaScript/JScript support of Java edition 17

K
keys

retrieving with the API 35
KIF files 133

L
layers

adding with the API 32
counting with the API 30
linking with the API 33
listing with the API 31
toggling on and off with the API 40

legend
suppressing in printout 44

linking
map layers with the API 33
MWFs to HTML pages 12

listing map layers with the API 31
LiteView Extension of the Autodesk MapGuide

Viewer 14

M
map features

accessing programmatically 15
counting 42
retrieving coordinates of 37
retrieving keys of 35

map legend
suppressing in printout 44

map title
customizing in printout 44

Map Window Files (MWFs)
accessing with the Autodesk MapGuide

Viewer API 15
adding to HTML pages 11

Map Window Properties dialog box
Popup Menu tab 100, 126
Reports tab 94, 108, 119

MapGuideObserver5.class 20, 21, 138
maps

adding to HTML pages 11
customizing the printout 44–49

menus, adding items to 100, 126
Microsoft Active Server Pages

see Active Server Pages
Microsoft Internet Explorer

see Internet Explorer

N
Netscape Navigator

accessing map object from 15
embedding a map 13
168 | Index

Netscape Navigator (continued)
event observers in 19–21
JavaScript support in 17

north arrow
suppressing in printout 44

O
OLE DB

working with data sources 81, 94, 103, 105,
108, 119

see also DSNs
overview of Autodesk MapGuide development 5–

8

P
page elements

adding 48
positioning 47
setting print priority for 47

Plug-In version of the Autodesk MapGuide
Viewer

displaying the map in 12
popup menus, creating 100, 126
print coordinate system 47
printout

customizing with the API 44–49
enabling print events 44
handler functions for print events 44
setting priority of page elements 47

Q
querying data (reports) 77, 78

R
radius mode, invoking 39
redlining

compared to updating SDFs 136
sample application 49

refresh of the display, controlling 23
reports

about 78
accessing with JavaScript 90, 101, 115, 127
accessing with the Viewer API 90, 101, 115,

127
adding to a map 77, 78
and server-side scripting 77, 78
creating in Autodesk MapGuide Author 83,

94, 108, 119
creating with ASP 102
creating with ColdFusion 55, 59, 80

retrieving
coordinates of selected features with the API

37
keys of selected features with the API 35

S
sample code 9–27, 29–76, 81–127, 129–166
scale bar, suppressing in printout 44
SDF files

see Spatial Data Files (SDFs)
security

Autodesk MapGuide Viewer API and 26
server pages

see Active Server Pages (ASP)
server-side scripts and applications 77, 78
SIF files 133
Spatial Data Files (SDFs) 129–166

converting to 146
copying 161
editing 134
getting information about 153
indexing 133
pitfalls 134
updating via the map 136
using Visual Basic to work with 146
working with 133–135

support for JavaScript/JScript 17
symbols

adding to the printout 44

T
Toolkit

see Autodesk MapGuide SDF Component
Toolkit

U
updating databases via the map 78, 94, 119
URL parameters, reports and 85, 95, 110, 120

V
Viewer API

see Autodesk MapGuide Viewer
API

Z
zooming with the API 41
Index | 169

AUTODESK

Instructions

Address Information
Despite rigorous product testing, some problems simply cannot be detected in advance. Let
us know if you discover what may be a bug in our software. We’ll address the problem,
so that our software can take care of your business.

BUG REPORT

1. Please fill in the form completely. Fill in the release number and serial number
for your Autodesk product (Autodesk MapGuide Author, Autodesk MapGuide
Server, etc.). Be sure to provide ALL the information about your system, as these
specifics are important. For peripherals, specify actual make and model. If the
peripheral is emulating another make or model, please note what that is. Please
indicate all network information requested on this form.

2. Under Problem Description, describe the problem clearly and completely. We
want to be able to re-create your problem, so we need to know the exact
sequence of activities that led up to it. Include the exact error message, if one
appeared. Use a separate sheet of paper if necessary. Please include information
about programs, services, or utilities that are running but not a part of the native
operating system.

3. If your problem concerns a particular drawing, please enclose a drawing disk.
Attach any other relevant materials and check the corresponding boxes.

4. Mail to:

Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903
Attn: Bug Report

Name Company

Date Address

Phone number

Extension City State
ZIP/Postal Code

Email address Country

Complete this section only if you are an Authorized Dealer:

Your customer’s name Your customer’s phone number

continued on back

BUG REPORT

D
 h
Autodesk, the Autodesk logo, AutoCA
trademarks belong to their respective

Hardware and
Software Information

Problem Description

Materials Enclosed
Product Name Serial Number

Computer Brand Name Model

Operating System(s)/Version Network Software/Version

Number of Nodes

Memory (Total RAM) Hard Disk Space

Graphics Card(s)

Digitizer/Mouse

Plotter Serial Parallel

Printer Serial Parallel

Use this space to describe the problem. Be specific in the sequence of steps that led
up to the problem and describe the exact results. Be sure to enclose copies of
relevant materials: drawing files (on disk), script files, plots, etc.

Disk Script Letter Print/Plot/Image

, and AutoVision are registered trademarks of Autodesk, Inc. All other brand names, product names or
olders.

AUTODESK
Address Information
We’d like to take credit for designing the world’s finest software, but the truth is that much
of the credit goes to you, our customer. If you have an idea for a new feature in the next
release of one of our products, or hope to see an existing feature improved, please let us
know.

Please send to:
Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903
Attn: Wish List
You can also submit wishlist items through the Autodesk Web page at
www.autodesk.com/wishlist

Name Company

Date Address

Phone number City

Extension State ZIP/Postal Code

Email address Country

Complete this section only if you are an Authorized Dealer:

Your customer’s name Your customer’s phone number

Please identify the Autodesk product this request is for:

Please indicate the product release (or version) you are currently using:

Product Serial Number Platform/Operating System

Choose the category that best fits your request:

New Feature or Command Printer/Plotter Support

Feature or Command Enhancement Platform Support

Documentation Change Installation and Configuration

Display Support Customization

Digitizer Support General

Operating System Support Other

If applicable, indicate which feature or command this request relates to:

continued on back

WISHLIST

to

de
ct,
ad
te
Autodesk, the Autodesk logo, and Au
belong to their respective holders.

In making this submission, please un
material is incorporated into a produ
protected by any copyright, patent, tr
and transferable license to use the ma

Thank You
Describe your request in detail below (one request per sheet):

Please indicate the reasons for your request (i.e., what would be the benefits of your request
and what problems would it solve?):

We appreciate your interest in our products, and will consider your suggestions in
our future product development.

CAD are registered trademarks of Autodesk, Inc. All other brand names, product names or trademarks

rstand that no contractual confidential relationship is established between you and Autodesk. If your
 you will not be compensated. In addition, if the material that you have submitted on this form is
emark or other proprietary right, then you are granting Autodesk a nonexclusive, royalty-free perpetual,
rials in connection with Autodesk products.

	Introduction
	What Can Custom Autodesk MapGuide Applications Do?
	View Maps
	Query and Update Data

	What Do I Need to Know Before I Begin?
	Autodesk MapGuide
	Programming and Scripting Languages
	Your Audience

	Developing with the Viewer�API
	The Autodesk MapGuide Viewer API
	Creating an Autodesk MapGuide Viewer Application
	Displaying the Map
	For the ActiveX Control and the Plug-In
	For the Java Edition
	For the LiteView Extension

	Accessing the Map Programmatically
	About the Java Edition

	Working with Autodesk MapGuide Viewer Events
	Event Handlers and Observers
	Event Observers in Internet Explorer vs. Netscape Navigator
	Naming Conventions
	An Example
	Additional Information

	Detecting and Installing the Viewer onto Client Systems
	Handling Display Refresh and the Busy State
	Controlling Display Refresh
	Detecting Display Refreshes
	Detecting a Change in the Busy State

	Handling Errors
	Argument Checking
	Debugging an Application

	Accessing Secure Data

	Viewer API Examples
	Performing Common Tasks with the API
	Counting Layers
	Listing Layers
	Adding a Layer
	Linking Layers
	Retrieving Keys of Selected Features
	Retrieving Coordinates of a Selected Feature
	Invoking Select Radius Mode
	Toggling a Layer On and Off
	Zooming In on Selected Features
	Counting Map Features
	Customizing the Printout
	Enabling the Print Events
	Writing Event Handler Functions
	Positioning Page Elements with the Print Coordinate System
	Setting the Print Priority
	Adding Custom Page Elements

	Advanced Applications
	Custom Redlining Application
	A Redlining Application Example
	For More Information

	Municipal Application
	Source Code

	Facility Management Application
	Source Code

	Using Reports to Query and Update Data Sources
	Autodesk MapGuide Reports
	How Reports are Generated
	Specifying the Report Script
	The Request
	Launching the Report

	Introducing ColdFusion and ASP
	Creating Report Scripts with ColdFusion
	Example�—�Listing File Contents with ColdFusion
	Setting up the Query
	Controlling the Output
	Seeing the Results

	Example�—�Querying and Displaying Data via the Map
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Script
	Creating an HTML Page to Display the Map
	Seeing the Results
	Redirecting Report Output
	Adding a Button with the Viewer API

	Example�—�Modifying a Database via the Map
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Scripts
	Creating an HTML Page to Display the Map
	Creating a Custom Menu Item
	Accessing Your Application with the Viewer API

	Creating Report Scripts with ASP
	Summary of ASP Objects, Components, and Events
	Example�—�Listing File Contents with ASP
	Specifying a Scripting Language
	Selecting Database Records
	Controlling the Output
	Seeing the Results

	Example�—�Querying and Displaying Data via the Map
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Script
	Creating an HTML Page to Display the Map
	Seeing the Results
	Redirecting Report Output
	Adding a Button with the Viewer API

	Example�—�Modifying a Database via the Map
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Scripts
	Creating an HTML Page to Display the Map
	Creating a Custom Menu Item
	Accessing Your Application with the Viewer API

	Using the SDF Component Toolkit to Modify Spatial Data
	About the SDF Component Toolkit
	Toolkit Objects
	SdfToolkit
	SdfObject
	SdfObjectGeometry
	SdfObjectGeometrySegment
	SdfDoublePoint
	SdfBoundingBox
	SdfCoordinateSystemMetadata

	Status Codes
	Enumerated Constants

	Working with SDF Files
	Indexing
	Editing
	SDF Pitfalls

	Performing Common Tasks with the Toolkit
	Updating SDF Files via the Map
	Visual Basic Examples
	Converting To an SDF File
	Getting Information about an SDF File
	Copying an SDF File

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Z

