
Effects of parameter changes in weighted averaging 

M. A. Nordahn 1, M. Burghoff 2, L.-H. Hiss 2,3, B.-M. Mackert 3, and L. Trahms 2 

1Department of Physics, Technical University of Denmark, Lyngby, Denmark; 2Physikalisch-Technische 
Bundesanstalt, Berlin, Germany; 3Department of Neurology, Freie Universität, Berlin, Germany 

 
1 Introduction 
Electric or magnetic signals induced by electro-
chemical activity in peripheral nerves are typically 
orders of magnitude lower than other biological 
signals, external environmental noise and instru-
mental noise. As a means to reconstruct these low-
amplitude Evoked Responses (ERs) from repeated 
measurements of stimulated nerves, a conventional 
ensemble averaging (EA) technique is often applied. 
However, the classical hypothesis of an evoked 
signal embedded in stationary and uncorrelated 
noise usually does not apply to real measurements 
of ERs. The weighted averaging routine [1], which 
uses weights for each epoch inversely proportional 
to the variance, has thus previously been introduced 
as an improvement of the EA routine. Recently, 
weighted averaging was further refined by 
considering the covariance between the epochs 
[2,3,4], thereby introducing a host of parameters 
that may have an effect on the final result. The 
present work is based on the weighted averaging 
assuming correlated noise (WA).  
The obvious advantage of WA in comparison to EA 
lies in the ability to reduce artefacts to a minimum 
in the processed signal. Artefacts are often gener-
ated by interfering biomagnetic sources such as the 
heart or muscles, but can also arise from external 
sources, such as switching near-by electric engines, 
moving cars, elevators etc. 
The aim of this work is to clarify the dependence of 
certain parameters on the WA, in order to optimise 
the application and to obtain a better understanding 
of the method. The parameters examined include the 
response to various components in the data series, 
such as heart beat and gaussian noise, minimisation 
of underestimation, block processing and Estimated 
Evoked Response Window (EERW) variations. 
 
2 Weighted averaging 
The basic principles of the WA routine will be 
sketched briefly here; the reader is referred to [2] for 
a more thorough presentation of WA. The basic task 
is to find optimal weights that suppress noise and 
artefacts as effectively as possible, whilst maintain-
ing the ER unperturbed. The measured data in a 

multichannel arrangement is assumed to contain 
signal and noise, as 
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where index i represent the epoch, defined as fixed 
time intervals between two consecutive stimuli, t the 
time and k the channel. Assuming the nerves to be 
invariant to stimuli in time, the epoch-independent 
sk(t) will be time locked to each stimulus. The nerve 
is stimulated MT times. The optimal weights are 
obtained by solving the following equation [2] 

where K is the number of channels, M is the so-
called blocksize, i.e. the number of epochs for 
which the ER is estimated, mmse is the minimal 
mean square error of the estimated signal and µij,k is 
the empirical covariance between the ith and the jth 
epoch of the kth channel, given by 
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where N is the number of time samples in one epoch 
and k,iy the average over time of yi,k(t). Due to the 
fact that the covariance matrix is singular for M ≥ N, 
the weights are estimated blockwise, i.e. the total 
number of epochs, MT, is divided into blocks with 
M ≤ N [2]. The estimated evoked response (EER) of 
each block is given by weighted sum of the respec-
tive epochs, as 
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where b is the block number. These block estimates 
are subsequently processed further.  
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 In order to minimise the effect of underestimation1, 
the last EER can be subtracted from each epoch 
before estimating the covariance matrix. The corre-
sponding weights are then applied to the original 
epochs to give a new estimate. Since these weights 
are not optimal to the original signal, the subtraction 
is restricted to a window interval containing the ER. 
This is the EERW, and within this window underes-
timation will be minimised. Samples not located in 
this interval are part of the so-called residual signal. 
These two temporal regions will be investigated 
separately.  
 
3 Method 
The data investigated is entirely simulated and con-
sist of a single channel time series (K=1) with the 
weighted sum of 3 different components, namely 
heart beat (P-QRS-T-waveform, weight 250), gaus-
sian noise (weight 20), and a repeated biphasic 
evoked response waveform (weight 1) (see figure 
1). This sum is called the full data. The amplitudes 
and waveforms of the signals are chosen to reflect a 
realistic measurement of the activity evoked in a 
peripheral nerve in the lower cervical or the upper 
lumbar region. 
 The advantage of this numeric approach is that it 
facilitates the investigation of the influence of each 
signal separately, and it renders possible the evalua-
tion of the merit of the outcome.  
 The reconstruction merit of the estimate is defined 
as 

                                                 
1 Lütkenhöhner et al. showed in [1] that due to the fact that the 
weights were estimated on the basis of y and not on the basis on 
n, the resulting estimate ŝ  is smaller than s. This effect is called 
‘underestimation’ 
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where sσ  is the standard deviation of the pure ER in 
the EER window and sŝ−σ  is the standard deviation 
of the difference between the estimated signal and 
the original signal. This can also be interpreted as 
the signal-to-noise ratio. 
 
4 Results 
4.1 Response to single signal components 

As a means to avoid MT ≥ N, the epochs are divided 
into blocks of blocksizes less than N, and the block 
signals are then processed further, either by use of 
EA or WA. The block approach also enhances proc-
essing time. For M close to N, the variance of the 
estimated signal is erratic and close to zero.  
  In figure 2 the dependence of ξ on blocksize is 
examined for single components of the data. Only 
the result within the EER window is considered 
here. The separate components are examined by 
adding 4500 consecutive time-stamped ERs of 190 
samples to a long time series containing a single 
component, e.g. gaussian noise, and processing the 
data with the WA routine to estimate the ER. Look-
ing at heartbeats only, figure 2 shows an efficient 
recovery of ER at lower blocksizes. A well-defined 
maximum is present at a point where the disturbing 
artefacts from the heartbeat are suppressed as effi-
ciently as possible to give ξ over 100 at blocksize 6. 
As comparison, the EA of the time series (domi-
nated by heart) gives ξ around 2. The smooth low-
frequency artefact of the heart can thus be effec-
tively compensated for by the WA routine. 
 The ensemble average is, as indicated, heavily in-
fluenced by the heart beats, and for full data, ξ is 
over 35% higher for WA than EA. This figure de-
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Figure 2: The signal-to-noise ratio as function of 
blocksize. The EER window is indicated in the 
inset. 
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Figure 1: The simulated data series is a superposi-
tion of gaussian noise, baseline drift, heart signal 
and ER. 



pends strongly on the waveform and amplitude of 
the MCG. Figure 2 shows that WA of full data is 
limited upwards by WA of gaussian noise and 
downwards by EA. The WA has therefore no advan-
tage to EA with regard to gaussian noise, but large 
advantage to EA with regard to heart beats, i.e.  to 
signal components with large covariances between 
the epochs. 
 
4.2 Minimisation of underestimation 

In determining the empirical covariance, the signal 
will inevitably contribute to the covariance. The 
estimated signal is thus prone to underestimation of 
the ER with up to 100% [1]. However, an iterative 
subtraction of the best possible EER in the EER 
window will ideally lead to convergence towards a 
better estimate of the ER (IWA = iterative WA).  
 If the original ER, uninfluenced by noise, could be 
uncovered and subtracted before the optimal 
weights were estimated, the effect of underestima-
tion would be eliminated. Now, the ER from periph-
eral nerve measurements seen as an isolated event, 
will most probably convey a smooth waveform. 
Thus, an iterative subtraction of a lowpass filtered 
EER without significant phase changes within the 
passband, is very likely to perform better than unfil-
tered.  
  Figure 3 confirms this statement. It shows the re-
construction merit as function of iterations calcu-
lated inside and outside the EER window, respec-
tively. The subtraction data was filtered for the first 
10 iterations, and then, continuing the algorithm, the 
non-filtered last iteration EER was subtracted for 
another 10 iterations. Within the EER window, the 
filtered subtraction converges towards ξ about 30% 
higher than unfiltered subtraction, thereby improv-
ing the outcome considerably. The extent of this 

improvement is dependent on blocksize and filter 
parameters.  
As observed, as soon as filtering is discontinued, the 
EER immediately starts to converge toward the 
curve of non-filtered subtraction. This effect is yet 
unexplained. However, the trend is evident and a 
platform for improvement has been unveiled. 
 
4.3 Block processing 

In this section, different approaches to block proc-
essing are investigated. Figure 4 show the merit of 
the signal with different variations of block process-
ing as a function of blocksize. An EA and a WA 
assuming uncorrelated noise (UWA, from [1]) of the 
full data are shown for comparison.  
 IWA strongly attenuates the effect of artefacts out-
side the EER window, both in comparison to EA 
and UWA (see figure 4). However, inside the 
EERW, the efficiency of the WA is improved by 
IWA but still challenged by the UWA. We thus find 
that in this case the UWA is comparable to IWA in 
the EER window. In order to gain insight into the 
underlying mechanisms of this the main problem by 
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Figure 4: The effect of different types of block proc-
essing on the signal within the EER window (top) 
and the residual signal (bottom). No significant 
differences in merit are seen, even though filtered 
subtraction tends to improve the result somewhat. 
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Figure 3: ξ as a function of iterations. The graph is 
left-right divided into a filtered and non-filtered 
subtraction region. 



WA, one must note that the subtraction of the last 
estimate in the EER window perturbs the signal in 
the window, but not outside. Although the perturba-
tion is slight the underestimation can as mentioned 
reach up to 100% under certain conditions. The 
optimal weight is estimated for this perturbed epoch, 
but applied to the original. Hence, the weights are 
no longer optimal for the signal in the EER window 
but (depending on the EER window ratio) only 
slightly displaced from the optimum outside. There-
fore, random noise will be of larger amplitude inside 
the EER window whilst being lower on the outside. 
This also explains the improvement by filtered sub-
traction, which is also evident in figure 4, since sub-
traction signal is smoother, leaving more noise to 
compensate for to the WA. 
 The results show that there is no significant im-
provement in ξ when the blocks are averaged by 
weights, since the non-stationarity of the noise and 
artefacts has been suppressed within the block. In 
conclusion, EA is sufficient for block processing. 
4.4 EER window 

The ratio between the number of samples in the 
residual signal and in the EER window will have an 
effect on the result, especially when this ratio is low. 
This is understood by considering the limiting ex-
ample in which the epoch is limited to the EER 
window. The optimal weights are then estimated for 
epochs in which all samples differ from the original 
epochs they are applied to, thus leading to erroneous 
estimations of the ER. A simulation was performed 
using only gaussian noise and no ER in order to 
investigate how the WA would respond in the ideal 
situation where all components of s are estimated 
and subtracted. Figure 5 shows that as an increasing 

number of samples are used for calculation of the 
empirical covariance between two epochs, the better 
the noise and artefact compensation in the EER 
window, assuming the EER window to be constant. 
It is observed that one should as a minimum have a 
ratio of 3 to obtain good results. Both signal regions 
converge toward the EA of the gaussian noise, indi-
cating that a large ratio is to be preferred for large 
signal to noise ratio. 
 
5 Conclusion 

In this work we have given an overview on the dif-
ferent parameters of the weighted averaging method 
and their influence on the result. We found that in 
the presents of large correlated perturbations, WA 
requires the considerations of the covariance. To 
avoid underestimation of the signal, an iterative 
approach of WA is recommendable. Furthermore, it 
may be advantageous to filter the iterative subtrac-
tion signal in an interval enveloping the evoked 
response. This interval should be as narrow as pos-
sible. 
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Figure 5: Here singly Gaussian noise is processed. 
The variance of noise within the EER window and 
outside is shown as function of the ratio between the 
number of samples in the respective regions. 
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