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Synopsis—The most obvious method for determining the distor-
tion of telegraph signals is to calculate the transients of the tele-
graph system. This method has been treated by various writers, and
solutions are available for telegraph lines with simple terminal con-
ditions. It is well known that the extension of the same methods to
more complicated terminal conditions, which represent the usual
terminal apparatus, leads to great difficulties.

The present paper attacks the same problem from the alterna-
tive standpoint of the steady-state characteristics of the system.
This method has the advantage over the method of transients that
the complication of the circuit which results from the use of ter-
minal apparatus does not complicate the calculations materially.
This method of treatment necessitates expressing the criteria of dis-
tortionless transmission in terms of the steady-state characteristics.
Accordingly, a considerable portion of the paper describes and il-
lustrates a method for making this translation.

A discussion is given of the minimum frequency range required
for transmission at a given speed of signaling. In the case of carrier
telegraphy, this discussion includes a comparison of single-side-
band and double-sideband transmission. A number of incidental
topics is also discussed.

SCOPE

THE purpose of this paper is to set forth the results of the-
oretical studies of telegraph systems which have been made
from time to time. These results are naturally disconnected
and in order to make a connected story it has been necessary
to include a certain amount of material which is already well
known to telegraph engineers. The following topics are dis-
cussed:

1) The required frequency band is directly proportional
to the signaling speed.

2) A repeated telegraph signal (of any length) may be
considered as being made up of sinusoidal compo-
nents. When the amplitude and phase, or real and
imaginary parts, of these components are plotted
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as ordinates with their frequencies as abscissas,
and when the frequency axis is divided into parts
each being a frequency band of width numerically
equal to the speed of signaling, it is found that the
information conveyed in any band is substantially
identical with that conveyed in any other; and the
bands may be said to be mutually redundant.

3) The minimum band width required for unambiguous
interpretation is substantially equal, numerically, to
the speed of signaling and is substantially indepen-
dent of the number of current values employed.

4) A criterion of perfect transmission is selected; and a
discussion is given of the characteristics which the
received wave must have to be nondistorting with the
requirement that the frequency range should not be
greater than necessary.

5) Directions are sketched for specifying systems to
meet this requirement.

6) Several alternative criteria of distortionless transmis-
sion are considered and a method for computing the
corresponding transmission characteristics of the cir-
cuit is explained and illustrated.

7) An analysis is given of the carrier wave, and it is
shown that the usual carrier telegraph requires twice
as much frequency range as the corresponding d-c.
telegraph, other things being equal.

8) A discussion is given of two alternative methods for
overcoming this inefficiency of carrier telegraphy,
namely, the use of phase discrimination and of a
single sideband.

9) After the d-c. and carrier waves have thus been ana-
lyzed a corresponding analysis is given of an arbitrary
wave shape, including these two as special cases. Cal-
culations are given on the shaping of the transmitted
wave so as to make the received wave perfect.

10) A discussion is given of the dual aspect of the tele-
graph wave. The wave may be looked on either as
a function of , requiring the so-called steady-state
method of treatment, or as a function ofrequiring
the so-called method of transients. It is shown that
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the steady-state theory can be made to yield the in-
formation necessary to specify the characteristics of
an ideal system.

11) A discussion is given of the effect of interference and
departures from ideal conditions.

The economy in frequency range, indicated under 2) and
3), should be considered as a theoretical limit which cannot
be attained in practice but which can be approached, the
closeness of approach depending on the degree with which
the requisite conditions are fulfilled. In practice, it is essen-
tial to limit the cost of terminal apparatus and this, in turn,
may lead to imperfect utilization of the frequency range.

In certain portions of the paper the discussion is limited
to ideal telegraph systems and it is the characteristics of such
systems which are referred to above [4)–6)]. These ideal sys-
tems have certain ideal transmission characteristics; while
the reader is given sufficient information to specify suitable
equalizers to produce an ideal system, there is no informa-
tion given as to how to proceed to build equalizers to meet
the requirements. It is not within the scope of the paper to
enter into the practical questions of cost and detailed con-
struction of signal shaping devices. While these subjects are
of great importance, it is thought best to confine the paper
to theory. Lest the reader should think this lack of equalizer
theory a fatal weakness in the whole theory presented, atten-
tion is called to the discussion of generalized wave shape;
where directions are given for approaching the ideal case as
closely as desired, by shaping the sent wave to take care of
any residual imperfections in the transmission characteristic.
Finally, under the discussion of interference, mention is made
of the effect of departures from the ideal in the matter of sig-
naling speed, transmission characteristic, etc.

SYMBOLS

Indicial admittance.
The coefficient of the th cosine term in a
Fourier series.
Magnitude factor of theth signal element.
General quantity in formulas.
The coefficient of the th sine term in a
Fourier series.
Magnitude of the th step of a rectangular
stepped signal element.
General quantity in formulas.
Susceptance (coefficient of imaginary part
of transfer admittance).
Real part of discrimination factor.
Defined in Appendix IV.
Numerical factor near unity.
An arbitrary increment of frequency.
Wave (usually voltage wave) as a function
of .
Base of natural logarithm.
Shape factor.
Defined in Appendix IV.
Specific shape factors.

Wave form.
Conductance (real part of transfer admit-
tance).
Envelope of a carrier wave.
Any positive integer, indicates order of
signal element.
An abbreviation for

.
Phase angle of carrier wave.
Wave as a function of.
Wave due to th signal element.
Unit of imaginary quantity, .
An integer or zero.
Variable under integration sign.
An integer or zero.
Number of signal elements in one repeti-
tion of a signal.
Any integer or zero, indicates order of si-
nusoidal component.

times frequency of repetition of a
signal.
An integer or zero.
A constant.
A subscript referring to receiving end.
The coefficient of the imaginary part of the
discrimination factor.
Defined in Appendix IV.
Speed of signaling.
A subscript referring to sending end.
Duration of one signal repetition.
Time.
An arbitrary interval of time.
Transfer admittance.

and Components of .
The conjugate of .
Phase shift of a given circuit.
When positive, equals times the fre-
quency; when negative equals times
the frequency.

times carrier frequency.

PRELIMINARY DISCUSSION

A simple telegraph system is obtained by connecting a
telegraph key and battery in series with a line at one end,
the other end of the line being connected to a sounder, both
ends of the system being grounded. Signals are transmitted
by opening and closing the key, which causes corresponding
movements of the sounder at the receiving end if the system
is properly designed and adjusted. Suppose it is desired to
transmit the Morse letter over the system. This may be
done by closing the key during one unit of time, opening it
for one unit of time, closing it for three units of time and fi-
nally opening it for a sufficient period to assure the receiving
operator that the signal is completed. This simple telegraph
system illustrates two characteristics of telegraph commu-
nication as the term is here used which will serve, for the
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purposes of the present paper, to distinguish telegraphy from
other forms of electrical communication. These characteris-
tics are:

1) The time is divided into approximately equal units
which will be called time units.

2) There is a finite number of conditions, and each time
unit is characterized by a single one of these condi-
tions.

In the simple illustration given, where the first time unit is
characterized by closing, the result is the “dot” of the letter
. The second time unit is characterized by opening the key.

Thus, the total number of conditions is two, open and close.
This is in sharp distinction to the case of telephony where
there are neither simple numerical relations between the var-
ious time intervals, nor a finite number of possible current
values.

In this simple illustration the rate with which the new con-
dition establishes itself throughout the system is not gener-
ally the same on opening and closing. This is because there is
a change in the terminal impedance as well as in the voltage
applied. The system would be simpler, mathematically, if the
keys were arranged to substitute for the battery an impedance
equal to that of the battery. It will be assumed in this paper
that the impedance is not altered when one condition is sub-
stituted for another. This is substantially true for polar teleg-
raphy but not for single-line telegraphy.

In the system under discussion there are two conditions,
battery and no battery. In the usual forms of polar telegraphy,
there are also two conditions, corresponding to positive and
negative battery potentials impressed at the sending end. In
well-known forms of submarine telegraphy there are three
conditions corresponding to positive battery, negative bat-
tery, and ground or zero voltage. Throughout the paper, un-
less otherwise stated, the discussion will apply to any number
of conditions and will, therefore, include the cases enumer-
ated as special cases.

Due to the distorting effect of the telegraph circuit the part
of the total signaling wave which is originally associated with
a given time unit does not remain confined to one time unit
throughout. There is overlapping between the wave portions
originating in successive time units. It is, of course, impor-
tant to follow the history of a given contribution to the signal
wave regardless of whether it is prolonged to occupy more
time than it did originally. To this end the termsignal ele-
mentis introduced and is defined as the contribution to the
signal ascribed to a given time unit. Whereas a time unit is
of a definite duration uniquely determined by the speed of
signaling, the signal element ascribed to a specific time unit
may, by the use of signal shaping, be made to extend into ad-
jacent time units.

The concept which has been discussed under the term
“conditions” is an important one and it is desirable to
formulate it more precisely. It will be assumed, when not
otherwise stated, that the shapes of the successive signal
elements are the same, so that they differ only by a factor
which may differ from element to element. For illustration:
in the case of the submarine cable system the wave shape
of the impressed voltage is the same in all three conditions,

being rectangular, and there are three proportionality factors
, 0, and . In the general case any signal element may

be expressed by the product

where is a real factor which may vary from one signal el-
ement to another and where is a function of time. The
origin of is, of course, a fixed instant with respect to the
signal element. The function will be called thewave
form. It is determined by the wave form at the sending end,
and by the transmission characteristics of the system between
the sending end and the point under consideration. It is not
affected by the particular signal or form of intelligence being
transmitted over the system. The factorwill be called the
magnitude factor. It differs from one signal element to an-
other but is the same in all parts of the system and, in fact, in
all systems transmitting the same signals.

Speed of signaling, , is usually specified in dots per
second and is defined as the number of signal elements per
second divided by two.

D-c. telegraphis characterized by a rectangular signal ele-
ment; the voltage is held constant during the whole time unit.

A telegraph circuit may be considered as a network upon
which a signaling wave is impressed at one point, called the
sending end, and from which a signaling wave is derived at
another point, called the receiving end. In the illustrations
given, the sent waves were voltage waves. This is not neces-
sarily the case in order for the discussion to apply. The sent
wave may be a current wave, or it need not even be elec-
trical. By providing suitable coupling the sent wave may be
mechanical or, say, in the form of variations in a light beam.
All that is required is that the system should be linear, in-
cluding the coupling between mechanical and electrical cir-
cuit elements. Similarly with the receiving end it is permis-
sible to consider either the voltage across the receiving de-
vice, the current through it, or the motion of the receiving
device to be the received wave; provided the device is linear.
An important exclusion is the ordinary telegraph relay which
is equipped with stops and which, therefore, is a nonlinear de-
vice. The siphon recorder on the other hand is probably sub-
stantially linear. The theory of mechanical impedances and of
coupling between mechanical and electrical impedance ele-
ments will not be dealt with in this paper.

PROPORTIONALITY BETWEEN SPEED OFSIGNALING AND

TRANSMITTED FREQUENCYBAND

It will aid the discussion to assume that the signal con-
sidered is repeated indefinitely at equal intervals. While this
is convenient, it constitutes no real limitation on the gener-
ality of the analysis, because the intervals of repetition may
be made as large as desirable. There is nothing to prevent us
from making the interval very great, say, an hour or a year.

Take first the case of any arbitrary signal made up of any
number of elements and any finite number of different mag-
nitude factors (current values) and repeated an indefinitely
great number of times. Such a periodic wave can be resolved
into direct current and a series of sinusoidal components. The
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lowest frequency component has a period equal to the period
of repetition of the signal. The next component is of double
the frequency or one-half the period of the first. The third
component is of triple frequency or one-third period, and so
forth. Certain components may, of course, be of zero ampli-
tude, i.e., entirely lacking. While there always is a definite
lowest frequency component, there is generally no highest
component; in other words, the total number of components
is usually infinite.

The transmission medium may alter the magnitude and
phase of the sinusoidal components. Some of them may be
substantially completely suppressed. Further, the medium
may introduce components either because it is nonlinear
or because interfering waves exist. The net result is a
deformation of the original wave.

Now consider another signal which is just like the one dis-
cussed except for the distinction that the signal elements of
the sent wave are of half the duration, that is to say, every-
thing happens twice as fast and the signals are repeated twice
as frequently. It will be obvious that the analysis into sinu-
soidal terms corresponds, term for term, with the case just
considered, the difference being that corresponding terms are
of exactly twice the frequency. Now if the second telegraph
system transmits currents up to twice the frequency of the
first and if, further, the transmitted currents are treated the
same in respect to attenuation, phase shift, interference, and
other modifying factors as the corresponding currents in the
first system (i.e., currents of half the frequency), then the re-
ceived wave in the second case will be the exact counterpart
of the wave in the first case; that is, its deformation will be the
same. Generalizing, it may be concluded that for any given
deformation of the received signal the transmitted frequency
range must be increased in direct proportion to the signaling
speed, and the effect of the system at any corresponding fre-
quencies must be the same. The conclusion is that the fre-
quency band is directly proportional to the speed.

It is apparent on examination of existing telegraph systems
that the factor relating band width and line speed does, in fact,
vary from system to system. The reason for this is that dif-
ferent systems utilize the available range with different effec-
tiveness. In the first place, the various components suffer dif-
ferent attenuation and phase changes from system to system.
Secondly, interference varies from system to system; and
there are also secondary imperfections. The question then
arises: What is the limiting value for this factor under ideal
conditions? It is one of the purposes of the following analysis
to answer this question.

ANALYSIS OF D-C. WAVE

Initially we shall assume a system which is ideal in all
respects of interest. Later on we shall indicate how these ideal
conditions can be approximated and what will be the effect
of small departures from the ideal conditions.

Let us consider again an arbitrary signal repeated at regular
intervals. As has been brought out above, such a signal has
an infinite number of components and can be represented by
a Fourier series. Suppose that each component is measured

at the receiving end, and suppose that proper allowance is
made for the known effect of the circuit on each component,
it is then possible to construct each component as it was im-
pressed on the sending end. If all the components were re-
ceived and measured, it would be possible to reconstruct the
original wave without deformation. Now for a given wave
form, (which in this case is rectangular) the magnitude and
phase-angle of the individual sinusoidal components of the
impressed wave are determined by the values of the quanti-
ties of the signal elements, and equations can be set for
computing each component. Conversely these equations can
be solved if a sufficient number of them is taken so that thes
are completely determined. Now the number ofs is finite,
whereas the number of sinusoidal components is infinite. It
follows from simple equation theory that all of the equations
cannot be independent; and, in fact, since each component
(with rare exceptions)1 yields two constants, it follows that a
number of components approximately equal to one-half the
number of signal elements should be sufficient to determine
the s completely, provided the components are chosen to
be mutually independent. It is concluded that full knowledge
of sinusoidal components is necessary to determine the
wave completely. It will be shown below that this number is
also sufficient.

The mathematical work of analyzing the wave into its si-
nusoidal components is carried through in Appendix I. It is
there shown that if the magnitude factors ofsuccessive
signal elements are given the values , etc., up to

, and if the signal is then repeated,2 the expression for the
applied voltage can be written in the following form:

etc.

etc.

where is the frequency with which the signal is repeated
and where the s and s can be computed from the formula

in which

is the speed of signaling, andis times the frequency
of the component.

is independent of the values of thes and depends
only on and the wave form within one signal element,
which in the present case is rectangular. Its value is altered if,
for instance, curbed signals are used. It may, for convenience,
be called theshape factor. It should be emphasized that

1B andA are identically zero.
2A convenient but not a necessary restriction.
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Fig. 1. Discrimination factor ofC signal. Showing the symmetry
and redundancy of successive bands. The corresponding points in
the various bands are indicated by the same symbol.

is independent of the intelligence transmitted. on
the other hand is independent of the type of wave employed,
but depends only on the particular signal which is consid-
ered. is thus determined by the particular intelli-
gence being transmitted and, in turn, determines that intel-
ligence completely. This factor may be called thediscrimi-
nation factor. An examination of the expressions for and

discloses the dependence predicted above and will en-
able us to select components which are independent. Both

and are made up of periodic terms, namely, cosines
and sines. If the value of is increased by the value each
one of these periodic functions has its argument increased by
an integral multiple of and is, therefore, unaltered. Sim-
ilarly if is increased by the arguments are increased by
an odd multiple of and all the terms are simply changed in
sign. Further, if the expressions for and are written
down for the values , and if it is remembered that

and , it will
be found that

and

The results may be written

and

Successive applications of the last formula give

and

where is any integer.
These relations are illustrated in Fig. 1, in which the dis-

crimination factor is plotted as a function of. The signal
which is illustrated in this figure may be referred to as the

signal. It is made of 10 signal elements whose successive
magnitude factors are 1, 0, 1, 0, 0, 1, 0, 0, 0, 0. An inspec-
tion of the figure will show the symmetrical relation between
points in adjacent bands of width , or 5 in this specific
example. Suppose that thesignal is sent in seconds. Then
the frequency corresponding to the fifth harmonic is
(generally ) which is also the speed of signaling.

If and have been determined throughout any one
of the bands, their values [and, being known, also the
values of and ] are immediately known for the whole
range from zero to infinity. Each such band contains all the
information about the signal that the totality of bands from
zero to infinity contains. One such band (or its equivalent) is
necessary and sufficient to determine the original signal. It
will be understood that information about is not intel-
ligence in the sense here considered. It is not necessary that
the receiving end should have any information about
at the sending end and consequently, no frequency range or
line time need be set aside for transmitting such information.
The frequency range which must be transmitted to specify
one band is numerically equal to the speed of signaling.

A special case occurs if the transmitted band is chosen
such that the shape factor is zero at some point within it. Then

and corresponding to this term, will be zero and the
values of and are indeterminate. The mathematical
treatment of this case would be long and difficult and it is,
moreover, thought that these cases are of little practical in-
terest. For these reasons no further discussion will be given
to them.

DISTORTIONLESSTRANSMISSION

It is obvious that with a finite transmitted frequency range
and with a rectangular sent wave, there will be deformation
of the wave form. It is, however, possible to have a deformed
wave and have a receiving device such that a perfect signal
is received. Suppose, for instance, that the receiving device
records the value of the wave at the mid-instant of the time
unit corresponding to each signal element. Then all that mat-
ters is the value of the wave at that instant; it does not matter
how much it is deformed in intervening intervals. For conve-
nience the termnondistorting wave, will be introduced and
will be defined as a wave which produces perfect signals. A
nondistorting wave may or may not be deformed. The cri-
terion for a nondistorting wave will vary with the manner of
receiving the signal. In this paper, when not otherwise stated,
the illustration just indicated will be taken as the criterion,
i.e., a wave will be said to be nondistorting when the value at
the mid-instant of any time unit is proportional to the magni-
tude factor for the corresponding element. In Appendix II-A,
the shape factor for this kind of wave is computed. When
the transmission characteristic of the system is such that the
received wave has this shape factor, the received wave is
nondistorting regardless of the number of distinct magnitude
factors employed. It will be understood that this criterion is
illustrative only. Later, alternative criteria will be illustrated
and discussed sufficiently to enable the reader to construct
his own criterion proper for the system in which he is inter-
ested.

Before proceeding to determine the characteristics of the
telegraph system which insure the ideal shape factor just dis-
cussed it is worth while to broaden the subject somewhat
by considering what other shape factors are capable of pro-
ducing the same results. Appendix II-A gives the deduction
of more general shape factors which meet the requirements
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Fig. 2. Ideal shape factors. Here the criterion for distortionless
transmission is that the height of the middle of each signal element
should be undistorted.a andc represent real shape factors which
produce a nondistorting wave,b andd shape factors which may be
added without producing distortion, the former representing a real
and the latter an imaginary value.

of being ideal. In Fig. 2, is a diagram of the shape factor
deduced as ideal, above. It is shown in Appendix II-A that
shape factors symmetrical about , after the manner illus-
trated at in Fig. 2, do not contribute anything to the current
value at the middle of the signal elements. Hence it is de-
duced that shape factors such as shown atare also ideal in
the same sense. There are obviously an infinite number of
these shape factors. In addition, there are an infinite number
of purely imaginary shape factors having the type of sym-
metry about which do not contribute to the value of the
wave at the middle of the signal element. Each one of this
infinity of imaginary shape factors may, of course, be com-
bined with any one of the infinity of real shape factors spoken
of above.

In order to visualize better the theoretical results obtained
so far, these results will be stated in terms of the design of
a telegraph circuit. What must be the characteristics of a
telegraph circuit in order that the application of the rectan-
gular voltage wave whose shape factor isshall result in
the nondistorting received wave just discussed, whose shape
factor may be taken as ? One answer is that the transfer
admittance3 of the circuit should be made such that

. It will be understood that the quantitiesand may
be complex. If the condition just stated were met, transmis-
sion would be instantaneous. This imposes an unnecessary
restriction on the transfer admittance. The signal will still
be distortionless if all the components suffer a constant lag

. If all the components are given a phase lag, which, when
specified in angular measure, is directly proportional to the
frequency, the received wave is not changed in shape but
merely displaced in time and this is, of course, permissible.
This leads to the following expression:

3The term admittance and the notationY is used to denote the ratio of the
numerical value of two waves regardless of their nature. This is a convenient
generalization of the customary usage, where this terminology is confined
to the case where the numerator of the ratio is a current, and the denominator
a voltage.

for the transfer admittance whereis the delay. Once the de-
sired value of has been found by this method, the problem
is reduced to measuring the phase and attenuation charac-
teristics of the circuit and designing suitable attenuation and
phase correctors to make the total transfer admittance equal
to . The actual design of attenuation and phase correctors
does not come within the scope of the present paper.

Appendix II-B has been added for the purpose of making a
concrete application. It may be omitted without loss of con-
tinuity in the theory.

The criterion of perfect transmission in what precedes has
been that the current value at the midpoint of the time unit
should bear a constant ratio to the impressed voltage. It will
be noted that this is considerably different from the case of
ordinary two-condition telegraphy, where the criterion for
perfect transmission is that the interval between the instants
when the current passes through the mean value (or some
other specific value) shall be the same as the corresponding
interval at the transmitting end. The principal reason why this
criterion has not been used above, is that the corresponding
method of reception is not so readily available in the general
case where more than two conditions are used. However, it
is of considerable practical importance and for this reason,
computations are given, (Appendix III), of the shape factor
for a wave which has the property in question, i.e. , of giving
a nondistorting wave in ordinary land-line telegraphy. While
the mathematics in Appendix III is carried out for an arbitrary
number of magnitude factors, it is suggested that it will sim-
plify the reader’s picture to think of two magnitude factors
only. Then the discussion applies to ordinary land-line teleg-
raphy. It is there found that a shape factor for the received
wave which satisfies this condition is

when

when

For d-c. telegraphy (rectangular sent wave) this corresponds
to a transmission characteristic given by the equation

when

and when

This particular shape factor has the disadvantage that the
amplitude is a function of the signal combination; in partic-
ular, a long continuation of reversals finally approaches zero
in amplitude. To overcome this, it is possible to add shape
factors which are symmetrical about the signaling frequency,
such as are shown in Fig. 3, and discussed more fully in Ap-
pendix III.

By way of further illustrating the method, the shape factor
is worked out for a received wave having the property that
the area under the wave for a time unit is proportional to
the current at the transmitting end. This case may be of in-
terest in some methods of picture transmission where the in-
tegrated exposure over a small interval of time may be im-
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Fig. 3. Ideal shape factors. In this figure, the criterion of
distortionless transmission is that the width or duration of each
signal element at the mean-value point should beuddistorted.a
and c represent real shape factors which produce a nondistorting
wave,b andd shape factors which may be added without producing
distortion, the former representing an imaginary and the latter a real
value.

portant. Other criteria for distortionless transmission suggest
themselves. For example, the signal may be taken distortion-
less when the area under the wave for the center fifth of the
time unit is proportional to the sent current. Such cases may
be of interest in certain types of printer reception where the
current flowing during the center fifth of each element might
be the quantity which is of interest. As another example, it
may be that the slope of the received current as well as the
current value determines the operation of the receiving de-
vice, in which case some such function as
would probably be a suitable quantity in terms of which to de-
fine distortionless transmission. It is thought that the reader
who is interested in any specific receiving device will have no
difficulty either in formulating a suitable criterion or in com-
puting the corresponding shape factor in accordance with the
method illustrated. In the meantime, the current at the center
of the signal element will be taken as the criterion.

ANALYSIS OF CARRIER WAVE

The analysis for the carrier-current wave, analogous to the
d-c. wave discussed above, is carried out in Appendix IV.
There it is shown that when no care is taken to relate the
speed of signaling and the carrier frequency there is no longer
a simple separation into a shape factor and a discrimination
factor, such as was observed in the case of d-c. telegraphy.
The expression for the sinusoidal components is:

If, however, the carrier frequency is taken as an even mul-
tiple of the speed of signaling, so that the carrier current is
proportional to , where is even, it is found
that

so that

which may be written

where and have the same values as in the direct-
current case.

is, of course, different in the present case and de-
pends among other things on the phase of the carrier wave
at the beginning of the signal element. More specifically the
value of the shape factor is given by the expressions:

It is shown in Appendix IV that when the carrier frequency
is an odd multiple of the speed of signaling,
takes on a slightly different form. However, the following
discussion applies equally well whetheris odd or even.

represents two bands symmetrical about the car-
rier frequency, each being identical except for sign with the
band determined for the direct-current cases. is a non-
symmetrical band and interferes with the symmetry between
the upper and lower sidebands. It is shown in Appendix IV
that this factor is due to the presence of components higher
than the carrier frequency in the modulating wave. Hence,
one method of suppressing this factor, and keeping the side-
bands symmetrical, is to remove these components from the
modulating wave before modulation takes place. A second
method of making the shape factor symmetrical is to use an
equalizing device, which is so designed as to multiply each
component by the ratio

Finally it should be noted that if the band width is small
in comparison with the carrier frequency, is small in
comparison with and, therefore, substantial symmetry
is obtained without any special precautions.

If the two sidebands are symmetrical, corresponding fre-
quencies equidistant from the carrier frequency combine to
form a wave whose frequency is equal to the carrier fre-
quency and whose envelope is a sine wave corresponding to
a component in the direct-current case. The frequency of the
envelope equals the difference in frequency between the car-
rier frequency and that of each of the components forming the
pair. On account of the mutual redundancy of the two side-
bands, the total frequency range required in the symmetrical
carrier case (i.e., in the case where the carrier frequency is lo-
cated in the middle of the transmitted range) for a given speed
of signaling is just twice that required in the direct-current
case. Except for this, the results as to band width required,
and ideal shape factors for the received wave, are the same
as obtained above for the direct-current case and it is not nec-
essary to repeat them.

It is obvious that this type of carrier telegraph is relatively
inefficient in its utilization of the available frequency range,
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and it becomes of great interest to inquire how this condition
may be improved. An obvious thought is to move the car-
rier frequency toward one edge of the available band and to
increase the speed of signaling in proportion to the interval
between the carrier frequency and the far edge of the trans-
mitted range. If an experiment of this kind is undertaken the
outcome will be disappointing, unless certain stringent re-
quirements, (explained below), are met. Far from increasing
the speed of signaling, it will usually be found that the relo-
cation of the carrier frequency decreases it. This is more fully
explained below and in Appendix V.

Examining the symmetrical, carrier wave more closely we
find that the redundancy residing in having two symmetrical
sidebands gives rise to an important property of the received
wave. Its frequency is constant, in the sense that the instants
of zero value are spaced at constant intervals. This property
will be found to restore the intelligence carrying capacity of
a given frequency range to the same point as an equal range
used in d-c. telegraphy. Let the received signal be ,
where the factor expresses the fact that the frequency
is constant. Consider a device which has two sets of input
terminals and whose response is proportional to the product
of the two waves impressed. Let the wave applied to one
set be , and let the other applied wave be .
Then the average response over a cycle is well known to be
proportional to , i.e., the envelope. If the second applied
wave is , the average response over a cycle is zero.
There are various devices whose response is proportional to
the product of two inputs. For the purposes of this paper it
will be convenient to think of a dynamometer with one fixed
and one movable coil.

Phase Discrimination:Systems of telegraphy based on
these principles, which may be called phase discrimina-
tion systems, have been proposed. Two carrier currents
are provided, one of which may be represented by
and the other by . Each of these is then modulated
in accordance with a separate signal, and the mixture of
the signals is impressed on the line. At the receiving end
the composite signal wave is impressed on each of two
dynamometers whose other windings are energized by
currents of the values and , respectively. Thus
one dynamometer responds to each signal and there is
substantially no mutual interference.

It is clear that in this system the total amount of intelli-
gence transmitted for a given band width is twice as great as
for the symmetrical carrier case which does not utilize phase
discrimination and is, in fact, the same as for the direct-cur-
rent case.

Single Sideband Transmission:We are now in position to
take up the single sideband case. In Appendix V, it is shown
that when the carrier frequency is removed from the center
of the transmitted band the received wave may be considered
to be made up of three component waves. The first of these is
an in-phase wave and builds up in the same manner as does a
d-c. wave in a low-pass system having a band width equal to
the distance from the carrier frequency to the far edge of the
transmitted band. This is obviously the wave which we are
trying to obtain; and if it existed by itself, the problem would

be solved and the experiment referred to above would be suc-
cessful. The second wave is also in-phase but builds up at a
slower rate, namely, that corresponding to the distance from
the carrier frequency to the nearer edge of the transmitting
band. Since these components are in phase they add alge-
braically at any given time and it is obvious that the time of
building up will tend to be determined by the slower compo-
nent. Hence, the normal result of moving the carrier from the
middle is a slowing up rather than the reverse. Besides, there
is the third component wave. This is a quadrature compo-
nent which is determined in magnitude and rate of building
by the frequency band, by which the separation of the carrier
and the far sideband exceeds the separation between the car-
rier and the near edge. This component, moreover, does not
build up to the signal wave, but rather to something approx-
imating the first derivative of the signal envelope. It is clear
that the second and third components must both be elimi-
nated. In addition, there is an important condition as to phase
correction. Ordinary filters are subject to considerable phase
distortion in the vicinity of the edges of the transmitted band.
It is of importance that this phase distortion be corrected by
suitable means. The problem of single sideband transmission
may now be separated into three parts.

1) Phase correction.
2) Elimination of the quadrature component, being the

third component discussed.
3) Elimination of the sluggish in-phase component, being

the second component discussed.

The first of these problems, the design of phase-correcting
networks, does not come within the scope of the present
paper. The second part of the problem, the elimination of the
quadrature component, is solved by the methods of phase-
discrimination telegraphy described above. The third part of
the problem, the elimination of the sluggish in-phase compo-
nent, is solved by moving the carrier so far toward the edge
that it disappears. The exact requirements to be met are set
forth in the Appendix.

GENERALIZED WAVE FORM

Two kinds of impressed wave forms have been discussed,
the rectangular, used in d-c. telegraphy, and the sinusoidal,
used in carrier telegraphy. It is of interest to generalize the
treatment of impressed waves to cover any other wave form
which may be considered, and to include these two as spe-
cial cases. The restriction will be imposed that the successive
signal elements are alike, except for a constant factor which is
given the values, , , etc., for the various signal elements.
There is no need to confine the elements to a single time unit.
It may overlap into neighboring time units. To facilitate vi-
sualizing the wave, Fig. 4 is drawn, which indicates how an
impressed wave may overlap both antecedent and subsequent
elements. Mathematically it may be expressed by saying that
the contribution made by theth signal element to the im-
pressed wave is given by the expression
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Fig. 4. Specimen of general wave form.

where is an arbitrary function of the time, whose origin
is conventionally taken at the center of the signal element in
question. It will be remembered that is called themagni-
tude factorand thewave form. Incidentally, the assump-
tion that the wave form is the same from element to element,
excludes the carrier waves where the carrier frequency is not
an even multiple of the speed of signaling. We may, there-
fore, expect to avoid some of the complications which arose
in the analysis of those waves. The total wave at any given
time is, of course, the algebraic sum of all the components
existing at that time

etc.

The Fourier analysis is given in Appendix VI. It is there
shown that the sinusoidal components are given by the ex-
pression

In other words, there is still the simple separation into two
factors, the shape factor and the discrimination factor. The
latter is identical with that obtained in the previous cases.
The shape factor is determined from the known value of
by the expression

Now it will be recalled that the shape factor of the received
wave is given by the expression

and in our previous work, we have evaluated, the trans-
mission characteristic of the circuit, so as to obtain a desired
value of , for a given . In other words, a desired received
current is obtained with a given sent wave by means of circuit
design. The present results suggest that the desiredcan be
partly obtained by modifying as well; in other words, the
desired received current can be obtained in part by circuit de-
sign and in part by signal shaping at the transmitting end.

While signal shaping and equalizing are equivalent it does
not follow that they are equally practicable. It may be said
that under usual conditions the use of networks is the simpler
when only moderate accuracy is required; whereas, the use
of signal shaping provides the greater accuracy but is com-
plicated.

There is an infinite number of sent waves which result in
nondistorting received waves. Thus it is, for instance, permis-
sible to use a sent signal element consisting of a succession
of rectangular waves such as shown in Fig. 9; provided the

intervals between changes are not made too great. The cal-
culations for this case are given in Appendix VII.

In the introductory part of the paper mention was made
of the fact that the design of equalizers would not be cov-
ered. It was also stated that a method of signal shaping would
be discussed, which would make up for the resulting incom-
pleteness of the theory. The discussion of the present section,
together with Appendix VII, in the matter there referred to.

DUAL ASPECT OFSIGNALING WAVE

It will be apparent from what has preceded that there are
two distinct methods of specifying the wave. One method is
based on the timeas the independent variable. This aspect,
which may be referred to asprogressive, contemplates the
signaling wave as a succession of signal elements following
one another at constant intervals of time from the first to the

th. The other aspect which may be called thecyclical as-
pect, is based on as the independent variable. This contem-
plates the signaling wave as the sum of direct current and a
succession of sinusoidal components beginning with the fun-
damental and including harmonics at least up to the/2th.
In the cyclical aspect, it is necessary to know only the mag-
nitude and phase of the successive components. It does not
matter in specifying the signal what time it took to transmit
the signal. It may be of some economic interest to know how
rapidly the signal is transmitted, but from a technical stand-
point, is very much in the background. Analogously, with
theprogressiveaspect of the wave the frequency is very much
in the background. It is not required to specify the wave, but
is of economic interest, in the sense that it is of interest to
know the frequency range required for transmission.

An enumeration will now be made of analogous processes
and quantities under the two aspects. Thesignal elementis
the unit out of which the signal is made up when considered
as a progressive wave; when considered as a cyclical wave
the corresponding elementary unit is thesinusoidal compo-
nent. The signal element has been denoted byand the
whole wave by : The sinusoidal component is
specified by and and the whole wave by

. The intelligence transmitted is
specified in the cyclical aspect by thediscrimination factor,

; in the progressive aspect this office is taken by the
magnitude factor .

The wave form specifies the shape, or form, of the
signal element and includes the degree of deformation. The
analog in the cyclical case is theshape factor . The
alteration in the wave, which is caused by the circuit or any
circuit part, is specified in the cyclical aspect by the phase
and magnitude changes; and to be definite, it may be taken as
thetransfer admittance, , which is a function of , and
which may be defined as the wave (specified as to magnitude
and phase) resulting at the driven point due to impressing a
unit sinusoidal wave at the driving point. The analog in the
progressive case is theindicial admittance, , which may
be defined to be the wave as a function of, resulting at the
driven point from suddenly impressing a unit wave (constant)
at the driving point.
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In order to change from one method of consideration to the
other, it is desirable to have available equations for changing
from the set of quantities suitable for one method to the set
suitable for the other. These equations fall into three groups.
The first relates the wave form and the shape factor, the quan-
tities which define the type of wave used. The second relates
the discrimination factor and the magnitude factor, the quan-
tities which define the particular signal. The third relates the
transfer admittance and the indicial admittance, the quanti-
ties which define the effect of the circuit on the signaling
wave.

The equations are:

Negative values of the argument do not require the
conception of negative frequencies. The frequency may be
thought of as signless and as represented by positive and
negative values of or both.

With either set of quantities, given, or found by the equa-
tions, it is possible to make corresponding computations in
the two systems. For instance, when the shape factor of the
sent wave and the transfer admittance are known, the shape
factor of the received wave can be computed from the expres-
sion

Analogously, if the sent wave form and the indicial admit-
tance are known, the received-wave form can be computed
from the expression

or others which are equivalent. Further, if the transmission
characteristics of two circuits connected in tandem are
known, their combined characteristic can be computed from

in the one system, and from

or an equivalent. is a constant in these formulas. It is not
the purpose of the present paper to go into circuit relations
to any greater extent than is necessary to bring out, clearly,
the parallelism and respective self-sufficiency of the two sys-
tems. For a fuller exposition of the relations between the var-
ious functions of , the reader is referred to K. S. Johnson’s
book, “Transmission Circuits for Telephonic Communica-
tion” and for a fuller treatment of the functions ofto J. R.
Carson’s book, “Electric Circuit Theory and the Operational
Calculus.”

The formulas shown in the last paragraph indicate that the
fundamental parallelism between the two kinds of functions
extends to calculations of the received wave. There is a differ-
ence, which is not of great significance from the standpoint
of pure theory, but which is important from the standpoint of
practical computation. It is seen that in the case of functions
of the operations consist of the multiplication of two char-
acteristics. In fact, by expressing the characteristic in terms
of a logarithmic function of in the usual manner, it is pos-
sible to reduce these operations to additions. In the case of
the functions of the computations are much more complex
involving differentiation, the multiplication of two functions,
and the evaluation of an integral. The processes of differen-
tiation and integration, are, in general, essentially graphical
operations which cannot be carried out with the same pre-
cision as processes which are essentially arithmetical. It is,
therefore, as a practical matter, greatly advantageous to ar-
range the calculations so they can be carried out with func-
tions of .

The important fact is that for telegraph purposes the
two methods are substantially equivalent in result, though
different in processes and labor involved. The fundamental
reason for this difference is that, on the theory as developed
in the paper, it is not necessary to compute the received
wave as a function of.4

The method of analysis used in this paper is that of the
Fourier series. It should be mentioned at this point that there
is an alternative method, known as that of the Fourier inte-
gral. The Fourier integral can be made to yield essentially the
same mathematical formulas as have been obtained in this
paper. Also, if care is taken, it is possible to obtain essen-
tially the interpretations here given. Appendix IX sets forth
the relation between the series and the integral, and points
out the problems where special care is needed in applying
the integral.

INTERFERENCE

So far it has been assumed that the circuit is free from ex-
ternal interference. In any actual case there is always some in-
terference present, and it is necessary to take it into account.
The effect of the interfering wave is to superpose itself on
the signaling wave and give the resultant received wave a dif-
ferent value, which otherwise it would not have. If the inter-
ference is great enough, the received wave will be interpreted

4Submarine Cable Telegraphy, J. W. Milnor, A. I. E. E. TRANSACTIONS,
Vol. 41, p. 20; in particular the suggestion made in the closing paragraph on
p. 38.
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as different from that intended. If the interference is nonpre-
dictable, (as likely to be positive, as negative), its arithmetical
value must be less than one-half the difference between any
two current values employed in signaling. In fact, the number
of distinct magnitude factors, hence, the amount of intelli-
gence that can be transmitted over a circuit, are definitely
limited by the interference. It is, therefore, important to con-
sider the nature of the interference and to determine to what
extent, if at all, it may be overcome.

Interference may be of many kinds and sources, including
such telegraph currents as cross-fire and duplex unbalance.
We shall go a step further and consider as interference such
portions of the telegraph wave as result from departure from
the ideal of the telegraph current. Thus the difference be-
tween the actual wave and the desired ideal wave is inter-
ference. It is realized that this convention is not in agreement
with common usage but, for the purposes of this paper, it is
justified by the simplification which results. In order to dis-
tinguish this interference from other forms it may be called
the characteristicinterference. The termintersymbolinter-
ference has also been used for this effect. It is closely related
to characteristic distortion.5

Interference may usually be reduced by suitable means:
Duplex unbalance currents may be reduced by improving
the balance; characteristic interference may be reduced by
improving the transmission characteristic; and interference
from other circuits reduced by increasing the coupling. But
when everything practicable has been done to reduce the in-
terference, there is, in general, a residual left which produces
distortion in the signals. The total amount of interference sets
a limit to the number of distinct magnitude factors which may
be employed and, therefore, to the rate with which intelli-
gence may be transmitted over the circuit. The interference
which can be tolerated depends on the amount of energy in
the signaling current. This is again limited by the power-car-
rying capacity of the line, either because certain apparatus
overloads or because interference into other circuits becomes
too great.

It is of considerable interest to determine the spectral dis-
tribution of power in the signal which is most suitable for
overriding a given interference. The assumption will be made
that the maximum power is definitely limited. It is shown in
Appendix VIII that when the shape factor is a constant from
zero to the frequency and zero for other frequencies, the
mean total power is proportional to

and it follows that for this case all signals which are made
up of the extreme values of the magnitude factors, (it is as-
sumed that the positive and negative values are numerically
equal), load up the system to the same extent. If some other
shape factor were used it would, in general, result in the max-
imum power only for the most favored signal combination;
for others, the power would be less. It is concluded that for

5Measurement of Telegraph Distortion, Nyquist, Shanck and Corv, A. I.
E. E. JL., Vol. 46, p. 231, 1927.

the purpose of overriding interference, when the power car-
rying capacity of the line is the limiting factor, the shape
factor just considered is the most suitable at the point where
the interference is introduced.

In discussing the interference above, it has been assumed
that the circuit is linear. If some of the circuit elements are
nonlinear, the result may be looked on as interfering currents
generated in the elements. This interference is predictable
and it is theoretically possible to eliminate or reduce it by
introducing elements which produce a compensating distor-
tion.

The assumptions have been made that the signal elements
are all of equal duration and that the system is designed espe-
cially to handle signal elements of that specific duration. In
other words, the system is designed for a given speed of sig-
naling in preference to other speeds, both slower and faster.
It is of obvious interest to inquire what the effect is when the
speed is somewhat different from that for which the system
has been designed, the signal elements being of equal length.

Suppose a system is designed to be distortionless at a speed
of signaling , and suppose that it is used to transmit signals
of the speed , where is a factor which does not differ
greatly from unity. Let the system be such that the admittance
is given by

An admittance which would give distortionless transmission
at the speed of is then given by the expression

The difference between the actual admittance given by the
first expression and the ideal admittance given by the second
expression represents an admittance giving rise to interfering
currents. Neglecting the constant delay, this admittance is
given by the expression

and the current corresponding to this admittance is the por-
tion of the characteristic interference which arises from the
alteration in speed.

Formulas for the interfering wave may be deduced from
this expression, but it will be sufficient for our purposes to
note the ratio of the interfering wave to the signaling wave at
a specific frequency. This ratio is given by the expression

or approximately

It will be seen that for a small discrepancy between the
ideal speed and the actual speed the amount of distortion is
largely determined by the slope of the transfer admittance
curve. The more abruptly the transfer admittance changes,
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the greater will be the interference accompanying a small
change in signaling speed.

It has been assumed that the change of speed is uniform,
i.e., that all signal elements are lengthened or shortened in
the same proportion. It is of considerable practical interest to
inquire what happens when there is no such regularity in the
change of speed, in other words, when some signal elements
are shortened and some are lengthened and when the various
elements are not changed in the same proportion. Consider
first a signal consisting of a single element of finite current
value, the current values of the remaining signal elements
being zero. It is clear that it makes no difference where the
ends of the signal elements are taken when the current value
is zero, and consequently this particular signal may be con-
sidered to come under the case already discussed. In other
words, the interference due to any one element is as discussed
above. Further, the total interfering current at any instant is
the sum of the interference caused by all the elements. It fol-
lows that to a first approximation, the interference is the same
as that deduced above for the regular lengthening or short-
ening.

It has been indicated that if interference from foreign
sources is kept low, the transfer admittance made to comply
with certain requirements and the speed of signaling kept
constant, it is possible to transmit signals with very little
distortion, utilizing a frequency range which is only slightly
greater than the speed of signaling. One advantage of keeping
the distortion small is that a large number of current values
may be employed, thus increasing the intelligence-carrying
capacity of the line. As explained above, the total interfering
current should be less than one-half the difference between
adjacent current values. In actual practice it will probably be
found desirable to keep considerably within these limits, so
as to have a definite margin. On the other hand, there would
be no object in reducing the interference beyond the point
where the signal is decipherable with certainty and ease.

APPENDIX I

Analysis of D-C. Wave:It is required to find the sinusoidal
components of a telegraph wave ofsec. duration composed
of rectangular signal elements and repeated an indefinitely
great number of times. Let the value of the wave at any instant
be denoted by , where

for (time unit )

for (time unit 2)

for (time unit )

Represented as a Fourier series the wave is

(1)

where is the frequency of the fundamental
wave. The problem is to find expressions for thes and s,
so they can be computed from the known values of thes.

Multiply both sides of the equation by and inte-
grate from zero to . In this expression is a positive integer.

(2)

From a well-known trigonometric formula

The integration is carried out over an integral number of cy-
cles and the result is, therefore, equal to zero with the single
exception where when the integrand has the average
value 1/2 and the integral is . Likewise,

The integrals of these obviously are also zero. The right
member of equation (2) reduces, therefore, to the single term

The left member of equation (2) may be written

etc.

or

Changing the origin ofto the center of the time unit to which
each integral refers, i.e., putting

and dropping the prime, we have

The integral in the second term is equal to zero. Rearranging
and substituting for , this expression becomes:

(3)
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The value of the integral is:

Remembering that , , the speed of sig-
naling, and , the result becomes

or

(4)

This has now been established for all values ofexcept
zero. If the same procedure be gone through with equation
(1) without multiplying by it will be found that this
formula does in fact hold for as well. Further, if equation
(1) be multiplied by and the same operations are per-
formed it will be found that

(5)

Put

(6)

(7)

(8)

The expressions (4) and (5) may now be written

(9)

The function is determined by the wave form and
by the intelligence being transmitted. The former will be

called the shape factor, the latter the discrimination factor.
It is a matter of convention whether a plus or minus sign

is chosen in equation (9). The choice made is consistent with
the more usual convention.

APPENDIX II-A
Specific Criterion of Distortionless Transmission:It is of

interest to investigate how intelligence may be accurately
transmitted by signals employing rectangular wave shape at
the sending end with a minimum frequency band width. In
Fig. 1 it is indicated that this is usually possible when a band
width equal to is transmitted. A case of practical impor-
tance is where frequencies are transmitted from zero up to
the speed of signaling. When such a limited frequency range
is employed the received wave is, of course, different from
the sent wave. In order that the received wave convey intel-
ligence, it is sufficient that something pertaining to the wave
in each of its time units be proportional or equal to the mag-
nitude factor of each signal element at the sending end. First,
let it be assumed that the received wave at the middle of each
time unit, measured by an ideal receiving device, be repre-

sentative of the signal element sent during that time unit. No
notice will be taken of the wave at any other point in the
time unit, and consequently deformations of the wave at other
points will not matter. It will be computed below what shape
factor the received wave must have in order for its value at
the middle of each time unit to equal the corresponding am-
plitude of the sent wave.

Let the current at the receiving end at the middle of the
time unit, , be equal to . Now at the
middle of the time unit, and the Fourier series becomes:

(1)

There are such equations, sincemay successively take
the values . There are also unknown values
of s and s. (Note, and .) These un-
knowns may be determined by the usual methods of solving
simultaneous equations, or more simply in the following
manner: Multiply all equations from to by

and add them:

(a)

(b)

(c)

(d)

(e)

(2)

In equation (2), use has been made of the trigonometric for-
mulas:

In order to simplify equation (2) we will employ the identi-
ties:

(3)

(4)
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To prove these identities, multiply the left member of (4)
by and add to the left member of (3):

(5)

Equating real and imaginary parts gives equations (3) and
(4), respectively.

By applying formula (3) to terms (a), (b), and (c), of equa-
tion (2), and applying formula (4) to terms (d) and (e),

(6)

As approaches any integral value of, for instance ,
from 0 to inclusive, all the numerators of the terms in
the right-hand member of equation (6) approach zero. Con-
sequently, these terms approach zero except one term

whose denominator also approaches zero. This term becomes
. Setting , solve equation (6) for :

(7)

Changing subscripts:

(8)

Now if, instead, we multiply equation (1) by
, a similar process gives:

(9)

But when this process gives:

(10)

From equations (8)–(10) it is seen that the shape factor
which will be denoted by , is equal to 2 from zero fre-

quency up to the speed of signaling where it suddenly drops
to half that value. Above this frequency is equal to
zero, as shown in curve, Fig. 2.

It will next be shown that there is an infinite number of
shape factors which may be added to curvewhich produce
no change in the current at the middle of the time units. For
example, curve shows a specimen of such a shape factor,
which may be any single valued curve so long as it is sym-
metrical about the speed of signaling except for a change in
sign. When this shape factor is added to that of curve, a
curve such as may result for the total shape factor which is
also ideal. Denote the shape factor of curveby . The
wave, due to such a shape factor, is:

(11)

where is any positive integer less than . It follows from
equations (7) and (8) of Appendix I that:

(12)

(13)

Substitute these relations in equation (11) making use of the
trigonometric formulas:

(14)

(15)

and put and
so that the formula for the wave becomes:

(16)

Since this expression contains the factor , which is
zero at the middle of the time unit, the wave does not have any
effect on the receiving device when the latter records current
values at the middle of the time units only. The curveis
any real shape factor, symmetrical about the dot frequency
except for a change in sign. Therefore, every such real shape
factor when added to curvegives a resultant shape factor
which is ideal.

It is next desired to show that the addition of an imaginary
shape factor which is any single valued function whatever,
provided it is symmetrical about the dot frequency in both
magnitude and sign, does not contribute to the value of the
wave at the middle of the time units. Consider the curveof
Fig. 2, which represents the magnitude of any symmetrical
imaginary shape factor,

(17)

NYQUIST: CERTAIN TOPICS IN TELEGRAPH TRANSMISSION THEORY 293



Equating real and imaginary parts of equation (17) the
values of and are determined, so that the wave may
be expressed as follows:

(18)

Using formulas (12)–(15) and putting
the wave becomes:

(19)

which is zero at the middle of the time units on account of
the factor . Since this is true for any symmetrical
function, , there is an infinite number of imaginary
shape factors which do not affect the values of the wave at
the middle of the time units.

APPENDIX II-B

Network for Distortionless Transmission:The purpose of
this appendix is to illustrate, concretely, the matter which
has been discussed in Appendix II-A, and the portions of the
main text associated therewith. This appendix does not form
any part of the chain of reasoning in the sense that anything
which is here discussed or deduced will be required subse-
quently. It can, therefore, be eliminated by those who are pri-
marily interested in the deductions of the main theory.

It has been shown in Appendix II-A that a certain ideal
shape factor can be modified by the addition of certain other
shape factors which possess a specific kind of symmetry
about a frequency equal to the speed of signaling. It is ob-
vious, on consideration, that similar shape factors possessing
symmetry about the frequencies , , etc., can also be
added in a similar manner without affecting the principal
characteristic of the shape factor. These considerations are
not of great practical importance in the cases considered
because it has been assumed that the important telegraph
problem is to transmit maximum intelligence in minimum
frequency range. However, these considerations will aid in
understanding the subject matter of the present appendix.

Fig. 5 shows a very simple circuit which has been de-
signed for the purpose of illustrating a nondistorting wave.
This circuit, containing only two reactance elements, has a
very simple form of transient, namely, a uniformly damped
sine wave. Now an important property of the sine wave is that
its zeros are located at equal intervals, which is precisely the
property required of a nondistorting wave under the criterion
discussed in Appendix II-A. The interval between successive
zeros in the illustration chosen is 0.005 24 sec.; and this is

Fig. 5. Instance of nondistorting wave.

Fig. 6. Transfer admittance,u + iv, corresponding to the
nondistorting wave shown in Fig. 5.

also made the duration of the time unit of the sent signal, as
illustrated in the figure. It will be remembered that on the cri-
terion under discussion a specific point of the signal element
is picked out and taken to represent the element. In the case
illustrated, this point should be taken at an interval 0.005 24
sec. previous to the first zero. It is obvious that if this is done
the interference due to all previous signal elements is zero
because the interference due to each one of them is zero. It
follows that any receiving device which is made to function
by the current at that point will be distortionless as far as in-
terference from adjacent signal elements is concerned.

Fig. 6 shows the transfer admittance of the same network.
The speed of signaling corresponds to the point for which the
abscissa is 600. It will be observed that these curves do not
possess the simple symmetrical characteristics discussed in
Appendix II-A, but this is because Appendix II-A was con-
fined to a narrow frequency range not much exceeding the
signaling range. If consideration be given to this fact, to-
gether with facts discussed in the second paragraph of the
present appendix, it will be found that this simple network
illustrates the theory.

Both the transfer admittance and the value of the current
curve are easily computed in the present case. The transfer
admittance is given by the expression:

The current, from the time up to the time
sec., is given by an expression which takes the following
form for the numerical values given:
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After the time sec., the current is given by the
expression:

APPENDIX III

Alternative Criteria of Distortionless Transmission:An
alternative criterion of distortionless transmission is that
the interval, between the instants when the received wave
passes through the mean value, shall be the same as the
corresponding interval at the transmitting end. A receiving
device which responds to the values of the wave at the
ends of the time units, instead of at the middle, will give
distortionless transmission provided the wave at the end of
the element, , is proportional to . This is the
criterion in ordinary land-line telegraphy. Strictly speaking,
we should also require that the wave does not pass through
this value at points located within the time unit. It is thought
that the complication involved by introducing this condition
is not warranted. We will first determine the coefficients
of the Fourier expansion of this received wave for the case
where the frequency range is limited to the interval between
zero and . We have:

(1)

since at the end of the th time unit.
As in Appendix II-A, we have simultaneous equations

and unknowns, the s and the s. The solution is of the
same nature as before, except that the equations are multi-
plied by instead of ,
before being summed. For values of we find by
similar reasoning:

(2)

By means of the trigonometric formula

we find that equation (2) may be written:

(3)

An analogous line of reasoning gives:

(4)

The shape factor is (Fig. 3, curve ), for fre-
quencies up to, and remains zero for higher frequencies. A

transfer admittance which will produce a wave of this form
when the sent wave is rectangular is:

when (5a)

when (5b)

This is obtained from the ratio of the shape factor at the re-
ceiving end, divided by the shape factor at the sending end.

Such a system would be incapable of transmitting ordi-
nary reversals, since zero current is transmitted for frequen-
cies equal to or greater than the dot speed. This defect may
be remedied by the addition of shape factors which are sym-
metrical about the signaling frequency, and do not contribute
anything to the wave at the ends of the time units. By rea-
soning, analogous to that given at the close of Appendix II-A,
it follows that the wave due to any real shape factor, sym-
metrical about the speed of signaling in magnitude and sign,
(Fig. 3, curve ), contains the factor , and, there-
fore becomes zero at the ends of the time units. In a similar
manner it can be shown that the wave due to any imaginary
shape factor, symmetrical about the dot frequency in magni-
tude but not in sign, (Fig. 3, curve), also becomes zero at
the ends of the time units. The addition of curveto curve
gives curve , which is also an ideal shape factor.

A third criterion for distortionless transmission is that the
area under the received wave shall have the same value as
that under the sent wave during each time unit. Thus during
the time unit , the area under the received wave must be:

(6)

This equation may be multiplied by , integrated, and
by means of the trigonometric formulas

it may be reduced to the following form:

(7)

This equation is the same as equation (1) of Appendix
II-A, except for the factor:

Consequently the shape factor for this wave is equal to the
shape factor of curve, Fig. 2, divided by
which reduces to:

for (8)

for (9)

for (10)
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which, if the sent wave is rectangular, corresponds to a
transfer admittance:

for (11)

for (12)

for (13)

In order to determine shape factors which may be added
to without changing the received signal, the following
method may be employed. Let represent the shape
factor to be added. The wave due to this shape factor com-
prises frequency components which lie above and below the
dot speed. Let equal any convenient frequency increment
not greater than. Then consider any pair of components at
the frequencies and , respectively, and find
what values of at these frequencies will produce com-
ponents which do not change the received signal. The portion
of the wave due to these components is:

(14)

In order that this portion of the wave add nothing to the re-
ceived signal, must be zero between and

, which is the time of the unit . Performing the inte-
gration and simplifying the result gives an expression which
reduces to zero when

(15)

Thus may have any real value, provided the condi-
tions of symmetry are fulfilled as expressed in equation (15).
This is true for any value of , and, therefore, is true for
all values of . A similar line of reasoning for imagi-
nary shape factors, , which do not change the signal,
gives:

(16)

Insufficiency of Ranges Smaller Than the Signaling
Speed: It has been shown that a frequency range numeri-
cally equal to the speed of signaling is necessary for the case
where there is no limitation on the number of distinct magni-
tude factors. It might be questioned whether the proposition
is true when this number is small. Consider the case where
there are just two, distinct magnitude factors,1 and 1,
and where the current at the middle of the time units is taken
as the criterion of transmission. Since there are only two
magnitude factors involved it is to be considered necessary
and sufficient that the wave at the mid-point of each time
unit should have the proper sign, regardless of magnitude.
We will now show that this cannot be insured when the
transmitted range is less than the speed of signaling.

Suppose first that the transmitted range extends from
zero to a point lower than the speed of signaling, so that the
missing portion is at the upper end of the range . Let

be an odd number and let the first signal elements
be . Let the next signal elements be a
repetition of this and let the signal be repeated indefinitely.
By far the most important harmonic of this signal below
the frequency is the th which corresponds to a
frequency of . By taking sufficiently large we
can insure that this harmonic is suppressed. If all frequen-
cies up to are transmitted and equalized for distortionless
transmission, and then the frequency removed, it
is found that, due to the great magnitude of this component,
the signal is reversed in sign at some of the critical points
(mid-points). The question is, whether by alteration of the
remaining components this can be corrected. We next show
that this cannot be done.

Consider the function . (This function
has the same sign as the sent signal at all the critical points.)
Next consider the sum obtained by adding the products of this
function and the received wave value at the critical points. If
the wave is correct in sign each one of these products is posi-
tive and therefore the sum is positive. Now, it is easy to show
that for any component of the received wave of lower fre-
quency than , the contribution to this sum is zero,
the negative products balancing the positive. Therefore the
assumption, that the received wave has the correct sign at all
the critical points, and the assumption that it is made up en-
tirely of frequencies lower than , are inconsistent.

In case the suppressed range is not at the upper end of
the range the procedure is similar. First find a fre-
quency, prime with respect to, and which lies in the sup-
pressed range, and is an even harmonic of the period. Let
its frequency be . Construct the function . Next
construct a signal made up of1 and 1 elements whose
sign at each critical point is the same as that of .
The argument then proceeds as before.

Similar proofs can be produced for other criteria.

APPENDIX IV

Analysis of Carrier Wave:It is required to find the sinu-
soidal components of a carrier-telegraph wave ofsec. dura-
tion, composed of time units, and repeated an indefinitely
great number of times. The carrier current is modulated by
a rectangular envelope during each of the time units, so that
the wave has the following values:

for (time unit )

for
(time unit )

for
(time unit ), etc.

Let the total wave be represented by the Fourier series:

(1)
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By reasoning similar to that of Appendix I [see (2) at the
bottom of the page]

(3)

where:

In a similar manner it can be deduced that

(4)

where:

Multiplying equation (4) by and subtracting it from (3)
gives:

(5)

It is evident that a special relation exists between
and when the carrier frequency is an integral

multiple of the dot speed, so that . When is even,
we see by inspection that:

(6)

where is the same as for the direct current case.
Also:

(7)

whence:

(8)

Substituting (6) and (8) in (5) gives:

(9)

When is odd, a similar line of reasoning gives:

(10)

is symmetrical about the carrier frequency in mag-
nitude, but is unsymmetrical. It will next be shown

(2)
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that is symmetrical about the carrier frequency
when the modulating wave contains no components higher
than the carrier frequency. From this it may be inferred that

is zero when these components have been removed
from the modulating wave before modulation takes place.
For example, let the modulating wave be:

(11)

Multiplying (11) by and making use of the
trigonometric formulas:

gives the carrier wave:

(12)

We see by inspection that components of this wave have the
same amplitudes, , at equal distances from

, where is never greater than . Hence an analysis of
this wave by a method analogous to that given in the earlier
part of this appendix, could yield no unsymmetrical shape
factor such as .

APPENDIX V

Single Sideband Transmission:The principle which will
be employed in the following discussion is, that when the re-
ceived wave through any complicated admittance is to be de-
termined, it is permissible to subdivide the admittance into
component parts to determine the received wave for each
component, and to add the resulting received waves for all
the components to obtain the complete wave. To make clear
the use of this principle a beginning will be made with the
transfer admittance shown atin Fig. 7. Strictly speaking,
this admittance is a hypothetical one only, but it illustrates
the principles and is a first approximation to the actual case
of band-pass filter.

The admittances are to be taken as real quantities. That is
to say, either there is no delay or, if there is any delay, it is
equalized and a new time origin is chosen so that the delay
disappears from the expression for the admittance. The car-
rier frequency is assumed to be located at, and the transfer
admittance of the system extends unsymmetrically in the two
directions from this frequency as indicated in the figure.

There are infinitely many ways in which this area may
be subdivided into component transfer admittances, but the
one most suited for our discussion is shown in the remainder
of Fig. 7. It will be observed that if the three admittances,
( , and ), are added together the result is the admittance
shown at . In accordance with the principle set forth above

Fig. 7. Graphical analysis of a transmission characteristic. The
sum of the transfer admittances shown atb, c, andd equals the
transfer admittance shown ata. The components,b, c, andd are
chosen so as to possess symmetry about the carrier frequency.

we conclude, therefore, that the received wave, in the case of
the admittance shown at, is equal to the sum of the received
waves deduced from the other three admittances.

Considering first the admittance shown at, we have here
complete symmetry with respect to the carrier frequency; and
it follows from the discussion of the symmetrical carrier case
that the received wave is of the same frequency and phase as
the carrier frequency and is modulated by a low frequency
wave, which is identical with that obtained in d-c. telegraphy
when a transfer admittance extending from 0 tois em-
ployed. It is assumed, for simplicity, that the wave used orig-
inally to modulate the carrier wave contains no components
of as high frequency as the carrier frequency. The discussion
of the admittance, shown at, is identical with that of . Com-
paring these two components, it is concluded that they are in
phase relative to each other, and that the component due to
builds up more rapidly than that due to. It is obvious that
the time it takes the result, due to these two components, to
reach a steady state is determined by the slower of the two.
We can conclude, tentatively, that, when the carrier frequency
is located near one end of the band, it is the frequency range
from the carrier frequency to the nearer edge of the trans-
mitted band which determines the rate of building up.

The admittance shown atis also symmetrical about the
carrier frequency, but it has a different type of symmetry. To
contrast the effect of this kind of symmetry with that of the
symmetry previously discussed, let us assume that the carrier
wave is represented by , and that the modulating wave
is represented by . The modulated wave is then

. This can be divided in the usual way into
two components located symmetrically with respect to the
carrier frequency. The two components are

and (1)

It is obvious that, in the case shown at, these components
are transmitted without any relative change and thus com-
bine to form the original modulated wave without any mod-
ification other than a possible multiplication by a constant.
In the case of the admittance shown at, however, there is
a relative change in these components. If one of them is left
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unchanged, the other is multiplied by1 and the two com-
ponents become

and (2)

The resultant wave is . The important
change produced by admittances, of the type shown in, is
that the carrier frequency has suffered a phase shift of 90
deg. An incidental change is that the modulating frequency,
which represents the signal, has also suffered a change of
90 deg. This reasoning can be carried through for all the
components making up the modulating wave, as long as their
frequency is less than the carrier frequency. It follows that
the zeros of the total wave, due to the admittance shown at
, are displaced one-quarter period of the carrier wave with

respect to the zeros of the corresponding waves obtained
with and .

It will be obvious that if the components due toand
could be eliminated, the resultant wave would be deter-

mined by the separation between the carrier frequency and
the far edge of the band transmitted. The wave, due to ad-
mittance shown at , can be eliminated in the reception of
the wave by the method discussed under “Phase Discrimina-
tion.” The wave, due to, is not disposed of so easily. It might
be thought that by moving the carrier frequency nearer to the
edge of the band the admittance shown atcould be made
to extend over a very narrow frequency range, and thus be
made negligible. It should be noted, however, that the steady
state value of the received wave is the same, regardless of
the width of the band, and that as long as any portion ofre-
mains there will always be a slow, interfering wave. The only
satisfactory answer is to locate the carrier frequency exactly
on the edge of the band, so that there is no separation, how-
ever small, between the edge and the carrier frequency. This
peculiar condition is due to the fact that we have assumed a
transfer admittance, having an abrupt cut-off.

In the practical case the cut-off is gradual, not abrupt. The
transfer admittance shown at, (Fig. 8), represents a transfer
admittance (real) which is suitable for single-sideband trans-
mission. It can be separated into two parts as shown, respec-
tively, at and : possesses the kind of symmetry which
leads to a phase-quadrature component; andpossesses the
kind of symmetry which is desirable.

Strictly speaking, it is somewhat inaccurate to apply the
term “single sideband transmission” to the case shown in
Fig. 8, or, in fact, to any case where portions of both side-
bands are transmitted. Since it would seem to be out of the
question to transmit a single sideband, in a strict sense, in the
case of telegraph waves, there should be no objection to this
designation.

The results obtained in connection with Fig. 8 may be de-
scribed in slightly different terms. Referring to, the dotted
line may be said to represent the ideal of single-sideband
transmission. The numeral 1 marks the area which is re-
moved from the ideal by the gradual cut-off of the admittance
curve. The removal of this area results in an impairment of
the wave due to the principal sideband. The area indicated

Fig. 8. Graphical analysis of a transmission characteristic. The
sum of the symmetrical transfer admittances shown atb and c

equals that shown ata. The heavy line ind is identical with the
curve in a; the thin curve is the mirror image of the heavy one.
The curve shown atb equals one-half the sum, and that shown atc

equals one-half the difference of the two curves shown atd.

by the numeral 2 represents the vestigial sideband, and re-
sults in an impairment. The result obtained, briefly stated is:
If areas 1 and 2 are equal, in the sense that when either is
rotated through point 3 it can be made to coincide with the
other, the impairment due to a missing portion of the prin-
cipal sideband is exactly compensated for by the wave due
to the vestigial sideband.

The discussion above has been limited to the special case
of real admittances. In what follows this restriction will be
eliminated and general complex admittances will be consid-
ered. These do not lend themselves so readily to graphical
representation, and for that reason the treatment will be made
algebraical instead. There is, however, a close parallelism be-
tween the analysis below and that given in Fig. 8, and it is
thought that reference to the figure will be useful.

Let the transfer admittance of the given system be de-
noted by . Consider the admittance represented
by . These two characteristics are the mirror im-
ages of each other with respect to the carrier frequency. They
are illustrated at , in Fig. 8. Next let be resolved
into two components after the manner discussed above

(3)

where

(4)

and

(5)

These two components correspond to the graphical resolu-
tion shown at and , being symmetrical about the carrier
frequency both as to magnitude and sign andbeing sym-
metrical with respect to magnitude but reversed with respect
to sign.

Let be a component of an impressed wave, and let
it modulate the carrier wave . The resulting wave is

(6)
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Consider first the wave resulting from impressing the first of
these (the lower sideband) on the admittance .
Let this admittance be represented by

, the quantities and being real. Impressing the wave
on the resulting wave is

or

(7)

Similarly, gives rise to the received wave

(8)

Carrying out similar operations for the upper sideband, and
remembering the symmetry of , the total wave transmitted
by is

(9)

which may also be written

(10)

In a similar manner the wave received through is

(11)

Now if the wave is demodulated at the receiving end, by mul-
tiplying it by the factor , and if high frequencies
are neglected, we have for the received wave after demodu-
lation

(12)

It now follows that the three operations, of modulation,
passage through the filter, and demodulation supplemented
by the suppression of high frequencies, are equivalent to the
passage through a filter having the characteristic

(13)

where

(14)

(15)

This formula then permits the direct computation of the re-
ceived wave. It will be noted thatmay be given an arbitrary
value. As a simplifying assumption, we may makeequal to
the phase shift of the carrier frequency, i.e.,

(16)

APPENDIX VI

Analysis for Generalized Wave Form:Let it be required to
find the sinusoidal components of a periodic telegraph wave
whose signal elements have the value:

(1)

where is the magnitude factor and

is an arbitrary function of time, and may overlap both an-
tecedent and subsequent time units. The origin ofis taken
at the beginning of the wave.

The total current, at the time, is:

(2)

provided the period is of greater duration than the wave
form.

Let be represented as a Fourier series; then, by a
method similar to that followed in Appendix I

(3)

Changing the origin of to the center of the signal element,
to which each term in the summation refers, i.e., putting

and dropping the prime, we have:

(4)

In a similar manner it can be shown that:

(5)

Multiplying equation (5) by , and subtracting from (4):

(6)
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where

(7)
To solve the reverse problem of finding in terms of

, put

(8)

which is the Fourier series representing a signal, consisting
of a single dot, whose and other values of are
equal to zero.

According to the definitions of and in Appendix I,
it is permissible to arrange this expression as follows:

(9)

Substituting:

(10)

(11)

we get

(12)

Putting and dropping the prime

(13)

As the period approaches infinity, the wave form approaches

(14)

Now, in order to observe the effect on the shape factor,
let us consider a special wave form, for example, a wave ob-
tained by curbing. For this type of signal the rectangular wave
is cut short for a small portion of the time of the valueat
the beginning and at the end of each time unit, so that

for

and

for

and

For this wave form, equation (7) reduces to

(15)

Put

which corresponds to a shortening of the time during which
the battery is applied to the cable to 3/4 of the length of the
total time unit, and apply ground during the remaining por-
tion. For this case

(16)

Comparing this shape factor with the corresponding one
for the noncurbed wave, (given in Appendix I), equation (6),
it is seen that the effect of curbing is to multiply the shape
factor by . A network having this
characteristic in the transmitted range would be equivalent
to the curbing.

APPENDIX VII

Distortion Correction by Signal Shaping:The problem
is: Given an arbitrary transfer admittance, i.e., one which is
not ideal, how should the sent wave be shaped in order that
the received wave may be nondistorting? It is proposed to de-
rive the solution for the case, where the value of the received
wave at the middle of the time unit is taken as criterion for
distortionless transmission. There are many solutions to this
problem, and we will restrict ourselves, at the outset, to a
particular type of wave form for the signal elements of the
sent wave; namely, the type wherein each signal element is
made up of a series of rectangular steps, each of one time unit
duration (Fig. 9). The problem, then, consists in finding the
height of each step.

By changing the point of view somewhat, it is possible to
make use of some previously obtained results. Let us tem-
porarily look on the unknown signal element, not as a signal
element but as a signal made up of a succession of rectangular
elements. The wave form of the unknown signal element is

, and the magnitude factors of the individual rectan-
gular elements are the unknown quantities .
We have

(1)

The shape factor of the rectangular signal element is

and the discrimination factor obtained by looking at the
sought signal element, as a signal, may be taken to be

. The problem is now reduced to finding and
for all values of from 0 to , since with these values
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Fig. 9. Example of signal shaping to produce distortionless
received signals.

known the s are determined uniquely. Equation (1) may be
arranged as follows:

(2)

The transfer admittance of any network may be repre-
sented by . In order to be more general, multiply
by ; where is an arbitrary constant, and is of the na-
ture of a constant delay. Let , where the bar
denotes the conjugate of .

The wave received over a circuit having this transfer ad-
mittance is:

(3)
Let

(4)

and rearrange terms

(5)

It may be deduced from equations (7) and (8) of Appendix
I, that

(6)

The receiving mechanism has been assumed to respond to
the ordinate of the received wave at the middle of each time
unit, (as representative of the signal for that unit), at which
time

(7)

where has values for successive time units.
We note that

(8)

Substituting equations (6) and (8), in (5), gives:

(9)

at the middle of the time units.
If we put for , and for ,

etc., then the received wave has the effect of a single dot
standing by itself.

Our next step is to solve the equations, such as (9), for
the unknown values of , in order that we may
be able to use the results in computing the sent wave. In a
manner similar to that in Appendix II, multiply each of the
simultaneous equations by , and add
all the equations:

(10)

as approaches any integral value,, from to
inclusive, the numerators in the middle factor of each of the
terms of the summation of equation (10) approach zero. Con-
sequently, the factors are zero excepting one whose
and one whose , wherein certain denominators also
approach zero, with the result that equation (10) reduces to

(11)

When each of the equations such as (9) is multiplied by
, a similar line of reasoning gives

(12)
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Multiplying (12) by , subtracting from (11), and putting
gives

(13)

(14)

At the sending end, the height of theth step, for any con-
venient value of during that time interval, is given by for-
mula (2). Where the steps are rectangular, it is more conve-
nient to use the formula

real part of

(15)

Substituting from (14) and (4):

real part of

(16)

In using formula (16) for computing , it will be under-
stood that and are the given quantities of the problem.
The quantities and which occur in addition to and
require comment. In the first place,is an arbitrary quan-
tity and may be given, for instance, the value zero. By giving
it, in succession, all the values between zero and an
infinite number of distinct solutions are obtained. The solu-
tion which is preferable, from a practical standpoint, may be
selected after computations are completed for a number of
values of . As for , it should be chosen large in propor-
tion to the precision required. It should be an even number,
and preferably not less than twice the number of steps to be
used.

The sum which occurs in the denominator is an infinite
series, but it converges rapidly and in most practical cases it
should be sufficient to use three or four terms. The function
occurs with negative arguments in this expression. This does
not imply negative frequencies but is merely to be taken as a
convenient notation. The expression is merely to be
interpreted as the conjugate of , where is positive.

APPENDIX VIII

It is required to compute the mean power of a wave char-
acterized by the shape factor,

for
for
for

Such a wave is

(1)

It will be sufficient to add the squares of the sinusoidal
amplitudes divided by 2, to the square of the d-c. component.
This gives for the mean power

(2)

Since

for
for

the power is:

(3)

Now

(4)

(5)

Adding

(6)

Substituting equation (6) in (3) and remembering that
and are identically equal to zero, the total power becomes:

(7)
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The expression in parenthesis is equal to zero unless
, in which case it equals . Hence the power is:

(8)

APPENDIX IX

The Fourier Integral: Up to the present the Fourier series
theorem has been used in the analysis to the exclusion of the
Fourier integral theorem which is closely related to it, and
it seems desirable to give a brief discussion of the Fourier
integral at this point. In order to keep the discussion brief
it will be necessary to make it sketchy and incomplete in
respect to details. The complex notation will be used because
of its compactness.

The Fourier integral theorem states that

(1)

regardless of the form of the function , provided it meets
certain requirements. The requirement which is of impor-
tance in telegraph theory is that

a finite number. (2)

The quantity is so far a mathematical quantity which serves
only as a variable under the integral sign, in the same sense
that does. In studying the integrand it will be assumed that

is identical with the quantity which occurs in expressions
for impedances and admittances. With this assumption the
theorem expressed by equation (1) can be written, in complex
notation:

(3)

(4)

expresses the wave as a function of time and ex-
presses it as a spectrum or a function of frequency.

For comparison we will now write down the Fourier series
theorem in an analogous form:

(5)

(6)

where takes the values 0, , , etc., and is
times the reciprocal of the fundamental period of the series.
It will be apparent that there is a close, formal similarity be-
tween equations (3) and (4) on the one hand, and equations
(5) and (6) on the other.

Now let the wave represent an arbitrary telegraph
signal made up of signal elements. Formulas (4) and (6)
give alternative ways for expressing the wave spectrally. The
latter represents the wave as a series of discrete frequency
components; the former represents it as a continuous spec-
trum. Both representations are exact when properly inter-
preted, although they differ in form; for when substituted in
formulas (5) and (3) respectively they yield the original wave

precisely. Both representations are limited to a finite number
of signal elements—the series because its period must be fi-
nite, and the integral because of equation (2).

While these analyzes are true for any succession of
signal elements which may be selected, their utility depends
upon severe restrictions on the signal elements which pre-
cede and follow the signal under analysis. To be of value in
circuit theory the series demands that the succeeding and pre-
ceding elements consist of an indefinitely great number of
repetitions of the signal under analysis. Similarly, the integral
depends for its utility on the assumption that it is followed
and succeeded by infinite sequences of elements having the
magnitude zero. These restrictions are normally not serious
because there is no limitation on other than that it should
be finite. In addition to being equally exact, the two methods
then appear to be substantially equally general (or restricted)
in respect to the complexity of telegraph signals which they
are capable of representing.

As might be surmized, most of the results obtained in the
paper follow from either method of treatment. First, if the
d-c. wave is analyzed by the integral method it will be found
that separates into two factors, a discrimination factor
and a shape factor. The discrimination factor has the property
of falling into equivalent bands, each of width equal to the
speed of signaling. From this it is concluded that the neces-
sary frequency range does not exceed the speed of signaling.
The various ideal form factors corresponding to various cri-
teria follow with somewhat greater difficulty. Whereas the
series treatment led to a system of linear algebraic solutions,
the integral treatment leads to a system of integral equations.

The only outstanding difficulty with the integral analysis
appears in connection with establishing the fact that the min-
imum frequency band equals the speed of signaling. In other
words, while it is easy to show that the information contained
in one frequency band of width is sufficient for the trans-
mission of intelligence, it is difficult to show that it is also
necessary. On the series analysis as used in the paper, this re-
sult followed very easily from the well-known principle that
the number of unknowns which can be found does not exceed
the number of given equations. When the frequency com-
ponents are not discrete but form a continuous spectrum no
such simple argument appears to be available. A somewhat
full discussion will be given.

On considering the matter it is apparent that the difficulty
arises from the lack of a precise formulation of what is meant
by transmitting intelligence. No formal criterion was neces-
sary in the case of the Fourier series treatment, but it will
be necessary to formulate one to make satisfactory progress
with the integral treatment. Stated in general terms the re-
quirement of the received wave is that it should be possible
to make measurements on it extending over a finite interval,
and from these measurements (together with the known prop-
erties of the admittance) to determine the sent wave. More
specifically, it should be possible to express the magnitude
factors of the sent wave as a linear sum (or integral) of the
measured values of the received wave. If the sent and re-
ceived waves are expressed as functions of, and the compu-
tations modified accordingly, it is obvious that the operations
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can be carried out on the sent wave in which case the received
wave will be nondistorting. We may then lay down as a crite-
rion for a telegraph system’s ability to transmit intelligence,
that it should be possible to shape the sent signals so as to
make the received wave nondistorting. In the remainder of
the Appendix this criterion will be used. It will be apparent
that the introduction of this criterion constitutes, in a sense,
a fresh start.

Taking for the criterion of a nondistorting wave that it
should have correct magnitude at the central point of the time
unit, and limiting the discussion to the case where the fre-
quency is limited to the range 0–, the shape factor of the re-
ceived wave is uniquely determined and is 2 throughout that
range. The shape factor of the transmitted wave is and
the wave form at the sending end is

(7)

If is finite throughout this range, this integral has a defi-
nite value. If has a simple zero at the integral may
be written

(8)

The first derivative with respect toof the definite integral
may now be evaluated. The derivative is determinate and by

integrating it with respect to a suitable value for may
be obtained.

If has a finite number of simple zeros, the function
may be broken up into a number of terms each of which has
not more than one simple zero; and the individual terms can
be treated as above.

When the function has double zeros, or zeros of any
finite order of multiplicity, suitable values of the function

can be found by an extension of the same method.
The significant results for a simple case will now be stated.

Suppose that the transfer admittance has a simple zero at the
origin (as in telegraphing through a transformer); the sent
wave, which gives a distortionless received wave, does not
approach zero asapproaches but approaches a constant
. If the zero at the origin is double (telegraphing through a

high-pass filter, made up of one series condenser and one
shunted coil) the sent wave should approach the valueas

approaches . For a triple zero the corresponding asymp-
totic value is of the form , etc. It is obvious that as the
multiplicity of the zero increases the function representing
the sent wave rapidly becomes more and more unmanage-
able. Now, if becomes zero throughout a finite interval at
the origin, we may think of it as having a zero of an infi-
nite order of multiplicity. It is to be expected then that there
should be no finite function capable of satisfying the require-
ments.
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