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[Abstract] Earlier the initial mass of meteoric bodies was defined under 
the so-called photometric formula by integration of luminosity along a visible 
site of a trajectory. On the other hand, the mass of a meteoric body 
characterizes height and intensity of braking of a meteor in an atmosphere. 
In a number of works, the essential divergence of masses received by these 
two ways was marked, on an example of fireballs from the European 
network and from the Prairie network, USA. The photometric mass exceeds 
the mass defined on intensity of braking on the order and more practically 
always. Explanations to this circumstance are published. One of them 
consists in the assumption that a plenty of equivalent fragments moves but 
not a single body. The plenty is braked as a single fragment, and shone as set 
of fragments, i.e. is much brighter than a single fragment. In this work, the 
pre-atmospheric mass is defined by selection of the parameters describing 
braking of a meteor along all visible site of a trajectory. Results for fireballs 
from the Canadian network again confirm an inconsistency of the 
photometric approach. 

Nomenclature 
 
 
A  = factor of the body shape 
H* = effective enthalpy of destruction 
h  = height 
M = mass 
Se = middle section area  
V  = velocity 
α = ballistic parameter  
β = mass loss parameter  
 

I. Introduction 
The question on a way of determination of initial masses of meteoric bodies is discussed in 

the literature for a long time. The detailed review and the analysis deserve the separate edition. 
Therefore here we shall result only some references. 

At processing observations the concept of photometric mass of a meteoric body is widely 
used 

dt
V
IM

t

t
ph ∫−=

1

2τ  

Here I is luminosity of a meteor, V is speed, τ is the luminous efficiency due to ablation. It is 
considered that integration on all visible sector of an atmospheric trajectory, i.e. from time of 

                                                 
 



going out t = t1 till time of occurrence of a meteor t = t0 gives value of preatmospheric mass of a 
meteoric body. 

The analysis of fireballs from to the European network is given in one of the first works on 
this subject (Ceplecha, 1978). Besides the photometric mass, values of mass in a final point the 
trajectories defined on observable braking are resulted. The calculations stated in last section of 
our work show that photometric data strongly overestimate values of preatmospheric masses. 

Researchers have met similar difficulties at the analysis of fireballs from the Prairie 
network in USA (McCrosky et al., 1971), in particular, at studying an atmospheric trajectory of 
the Lost City meteorite. Comparison of full photometric mass to total mass of the found 
fragments testifies to unreasonably big ablation during movement in the atmosphere. Indirect 
researches of mass ablation on measurements of space beams traces in meteorites, and also 
radioisotope methods show more moderate mass loss owing to ablation. To reduce this 
divergence, authors changed τ in the photometric formula. To have reasonable values of the 
initial mass of meteoroid Lost City (about 50-100 kg), τ should be increased of in eight times. 

The similar situation has arisen at studying of the Beneshov bolide, fixed on May 7, 1991 
by the stations in Czech Republic, which are the part of the European network. The estimation of 
the initial mass on observable braking (Barry and Stulov, 2003), and also by means of a method 
a gross-fragmentation (Ceplecha et al., 1993) has given value no more than 100 kg. On the other 
hand, calculations under the photometric formula, and also by a method of radiating radius show 
that the initial mass of the bolide is 4000-13000 kg (Borovicka et al., 1998). Such significant 
difference of estimations retains till now. 

 
II. The Description of Atmospheric Trajectories 

 The solution of the meteoric physics equations 
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shows that the trajectory depends on two dimensionless parameters α and β (Stulov et al., 1995)  
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Here an angle γ, drag cd and heat transfer ch coefficients and also effective enthalpy of 
destruction H* are constant. Velocity Ve, body mass Me and the middle section area Se on entry 
into the atmosphere (an index «е»), and also height of the homogeneous atmosphere h0 and 
density of gas on the sea level ρ0 are in formulas (2). The basic dimensionless variables are: 
height y = h/h0, velocity v = V/Ve and body mass m = M/Me. Parameter α characterizes intensity 
of braking as it is proportional to the ratio of the atmospheric column mass with cross-section Se 
along the trajectory to body mass. Parameter β is proportional to the ratio of a portion of kinetic 
energy of a unit body mass acting on the body in the form of heat, to effective enthalpy of 
destruction. 

Value of parameter μ = logms (s = S/Se is the middle section) characterizes a possible role of 
rotation in flight: μ = 0 when rotation is absent, μ = 2/3 when ablation occurs uniformly on all 
surface due to rotation, so the factor of the body shape A = S/W2/3 (W is volume) is constant.  

The integral exponent Ei(x) in the analytical solution for trajectories complicates the 
further calculations. Therefore at the limited values of the mass loss parameter β, the solution is 
replaced to more simple approached expressions (Stulov et al., 1995) 

                            ( ) ( ) ( ) ( )vvvyvY −+−−=−= 183.0lnlnln,,, βαβαβ                                  (3) 

Comparison of functions (1) and (3) is resulted on Fig. 1 for β = 1, 2, 3. In the solution (1), 
the integral exponent Ei(x) was calculated as an expansion at the limited values of argument 
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(Janke et al., 1964). Comparison shows that the approached representation of the solution by the 
function (3) is possible to use with sufficient accuracy in a range 0 ≤ β ≤ 3. 

There is a natural restriction of the specified approximation. Function (3) has a point of 
inflection at v = e-1. The derivative of function (3) in this point is equal Y ’ (e-1,β) = e – 0.83β. In 
other words, at β = e/0.83, the point of an excess turns to a minimax so at β > e/0.83 = 3.275 
function (3) has a minimum and a maximum, i.e. it becomes unsuitable for the description of the 
trajectory within the limits of considered model. 

 
III. Method of the Least Squares 

The purpose of this work is determination of parameters of meteoric bodies according to 
observations of the Canadian camera network (Halliday et al., 1996). As it was already marked, 
exact (1) and the approached (3) expressions for atmospheric trajectories depend on two 
dimensionless parameters (2) describing braking and ablation of a meteoric body. Therefore at 
selection of these parameters the main attention should be given those sectors of the trajectory 
where braking and ablation are precisely enough expressed. On the other hand, preliminary 
processing of observant data to choose the priority sectors would complicate research, would 
make it insufficiently objective. The alternative is solved by use of a trajectory (3) in the 
following form 

                                          ( ) ( )[ ] 0183.0explnexp =−−+− vvy βα                                          (4) 

Required parameters α and β are defined by values on which the minimal value of 
following expression is reached 
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)Here ( βα ,,, ii vyF  is the left-hand side of (4), and yi, vi are data of observations. The similar 
variant of the least squares method was used earlier in works (Stulov, 2000; Barry and Stulov, 
2003) where analytical expressions for trajectories in view of consecutive fragmentation were 
used as trial functions except for (4). 

Minimum of function Q3(α, β) is defined by the rules  
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The first part of (6) gives obvious expression for parameter α 
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and the second one allows to work out the transcendental equation for one unknown parameter β 
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where α is given by the formula (7). 
The approximate solution of (8) can be found as follows. We shall put x = b – 1 = exp(-

0.83β)-1 and spread out the left part of (8) in expansion on х, keeping linear and square-law 
composed. Solving a corresponding quadratic equation and choosing its root getting on half-
interval [-1, 0], we shall receive required value of mass loss parameter β = -0.83-1ln (x+1). 

 3



As it was already marked, application of trial function in the form of (4) allows to use all 
available observant basis (yi, vi), not rejecting in advance points with small braking and ablation. 
These points take place in initial sector of a trajectory and correspond rather to great values yi 
which give in (4) the exponential small (smaller) contribution. 

The exact solution of the equation (8) is found numerically by the method of Newton. As 
initial approach, value b0 = 1 or a root of the square-law approach described above is taken. 
Usually, it does not lead to substantial growth of iteration number. 

 
IV. Preatmospheric Masses of Meteoric Bodies 

Calculations of parameters α, β for a number of fireballs from the Canadian camera 
network (Halliday et al., 1996) have been lead. As the basic table in the equation (8), all 
observational points were accepted in all cases. Simultaneously, preatmospheric mass Me was 
determined on values of parameter α 
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At calculation of Me, the following numerical values of parameters were accepted: ρ0 = 1.29·10-3 
g/cm3, h0 = 7.16 km. As well as in work Halliday et al. (1996), it was considered that a meteoroid 
has the form of a rectangular parallelepiped (a brick-like shape) with the edges 2L, 3L and 5L 
and the face plane 3х5, so the factor of the body shape A = 15L2/(30L3)2/3 = 1.5536; besides ρm = 
3.5 g/cm3, cd = 1 (Halliday et al., 1996). 

Observable trajectories are curvilinear, so sinγ changes along trajectories. The value of sinγ 
was calculated under the formula 

          γsinV
dt
dh

−=                                                               (10) 

using the central differences for internal points. In the formula (9), the average arithmetic value 
of sinγ on all observable points was used. 

Results of our calculations for 22 fireballs from the Canadian network are given in Table 1. 
Also the values of preatmospheric masses MI (Halliday et al., 1996, Table 4) are given in Table 
1. The basic part of values MI are the photometric masses mp (see Table 6 of Halliday et al., 
(1996)) in most cases. 

Examples of approximation of observant trajectories with use of the found values α, β are 
shown on Fig. 2 for fireballs 018 and 567. As one would expect, the best approximation concerns 
to area of the developed braking (v ≤ 0.9). 

The basic result of the calculations shown in Table 1 consists in essential difference of the 
initial masses determined by braking on all observable site of their trajectory, on the one hand, 
and the masses received on the basis of intensity of fireball luminescence (photometric masses), 
on the other hand. 

The Canadian authors had been undertook efforts on updating factor of the luminous 
efficiency τ depending on velocity. These efforts are represented us hopeless as the reason lays 
not in imperfection of the known photometric formula, and in illegality its application in 
considered cases. 

Last statement is illustrated in Table 2 for four fireballs. The first 5 columns are taken from 
the work (Halliday et al., 1996, Table 6). Here hb, hmI, ht are heights of the beginning of shone 
sector of a trajectory, the maximal luminosity and the termination of shone sector. Values L and 
Reff correspond to the characteristic sizes of meteoroids according to the initial masses Ме. 
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Here Reff is the radius of the sphere equal on volume to a rectangular parallelepiped 2Lx3Lx5L, 
which size L is defined by the mass on entry. Last three columns in Table 2 show: hl is height 
where the size L is equal to length of free run of atmospheric molecules, hsw is height, below 
which the air flow around equivalent sphere of radius Reff occurs in a so-called mode of a thin 
viscous shock layer, i.e. height, on which for the first time (with reduction of height after the free 
molecular flow) the thin shock wave is formed. At last, hbl is the height corresponding formation 
of a thin boundary layer on equivalent sphere. The height hl was calculated under the following 
formula 

( ),/ln 00 llhhl = km                                                    (12) 

Here l0 = 0.19·10-4 cm is length of atmospheric molecular free run on the sea level (Цянь Сюэ-
сень, 1965). Including l = L with use of the first formula (11), we shall receive 

 ,7.66log5.5 += el Mh  km                                            (13) 

Value of heights hsw and hbl were calculated on the estimated data resulted in the 
monograph (Stulov et al., 1995, Fig. В.1 and Fig. 2.1). Approximation of the estimations 
resulted there gives following formulas 

 ,log157.40,log05.1753 effbleffsw RhRh +=+=  km                                 (14) 

The data of Table 2 reliably testify that the basic part of luminous sector of the trajectories 
of investigated fireballs lays in conditions of a flow in a mode of the continuous fluid dynamics, 
and the condition of free molecular flow (l ≥ L) is outside of its limits, except fireball 567, hb = 
91.4 km, hl = 87 km where this condition concerns only to the beginning of the trajectory. In all 
cases the height of the maximal luminescence is less than height of formation of a powerful head 
shock wave. At this height reduction of fireball velocity does not exceed 7% from entry velocity. 
It allows to assume that in these conditions the basic contribution to fireball luminosity gives air 
in the compressed shock layer. The vapor luminescence has secondary role, so, the known 
photometric formula (Lebedinets, 1980) is inapplicable.  

 
V. About Dynamic Mass in the Bottom Part of Trajectories 

In some cases, observers calculate dynamic mass of a meteoroid in the bottom part of the 
trajectory with the purpose to receive estimations of possible meteoritics mass (Ceplecha, 1978; 
Halliday et al., 1996). These calculations are carried out on the basis of braking (negative 
acceleration) the body received by numerical differentiation of observable dependence V(t). 
They are not connected in any way with concept of photometric mass. 

It is useful to compare these calculations to the values depending on received here initial 
masses of fireballs from the Canadian network (see Table 1). We shall deal with the analytical 
device of the exact and approached solutions of the meteoric physics equations described above. 

Let's define in the beginning value of braking along a trajectory. Simple calculations with 
use (3) give 
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Numerical values of braking (15) and comparison with calculations of observers (Halliday et al., 
1996, Table 6) are resulted in Table 3. In the same place, results of numerical differentiation of 
observational data Vi (ti) using the central differences for internal points are given for the control 
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In table 3, local value of sinγ, defined under the formula (10), was used, and the derivative was 
calculated also by the central difference (16). The sign minus at values of braking is lowered. 
Data in Tables 3 show that the approximate formula (3) also allows to calculate change of 
velocity in time with a good accuracy, and it can be used for calculations of braking. 

In work of Halliday et al. (1996), fireball mass in the bottom part of its trajectory was 
defined by numerical differentiation of observable distribution of velocity on time in the 
assumption of the constant body form (a brick-like shape 2Lx3Lx5L). The solutions of the 
meteoric physics equations (1) - (3) presented here allow to express change of mass depending 
on velocity both as the exact solution (the first formula (1)), and through braking (15), and at 
various assumptions of ablation type. Simple calculations give the following formula 

      ( ) ( )[ ]vvvm −−+=− 183.0expln83.011 ββμ                                    (17) 

Here, as well as in the first formula (1), we have: μ = 0 is the movement with the constant 
middle section area S = Se = const, μ = 2/3 is the movement with constant factor of body shape A 
= Ae = const. 

So, comparison of dynamic masses in the bottom part of trajectories md (the right column in 
Table 6 of Halliday et al., 1996) is carried out with results of calculations under the first formula 
(1) at μ =2/3. In some cases, the formula (17) is used also at the same value of μ. Comparison of 
data is shown on Fig.3 and in Table 4. Continuous lines in Fig. 3 show masses 

( ) ( )[ ]213exp, vMvfMM ee −−== ββ                                        (18) 
calculated under the first formula (1), and Me are taken from Table 1. Drawing lines show masses 
M = MI f (v,β), where MI are taken from Halliday et al., (1996), Table 4. The prevailing part of 
values MI is made with photometric mass mp. Stroke-dashed lines on Fig.3 show calculations 
under the formula (17), where M = Me m, kg. In all cases, the dependences M(v) are constructed 
at v ≥ vt, where vt is a fireball velocity in the last observational point. Small circles on Fig. 3 show 
values md. 

In Table 4, values M1 and М2 in all cases correspond continuous and drawing lines in Fig. 3, 
accordingly. 

First of all, let's note "attraction" of values md to continuous lines, instead of to drawing 
lines in all cases, except for fireballs 189 and 888 (Table 4) and болида 672 in the same place. In 
case of fireballs 189 and 888 this "attraction" is not so brightly expressed, as in most cases, and 
for fireball 672 is absent absolutely. It does not change the general conclusion. The result of 
comparison once again indirectly refutes conformity of values MI to preatmospheric masses of  
meteoric bodies. In other words, even rather approximate approach demanding numerical 
differentiation of observable dependences Vi(ti)  at calculation md shows that integration of 
luminosity, i.e. calculation mp, cannot give correct values of masses on entry into the atmosphere. 

Values of dynamic masses in the bottom part of trajectories are given also in work of 
Ceplecha (1978). Unfortunately, the method of calculation is described in this work is rather 
compressed, and trajectories are not resulted. The dynamic mass in the bottom point is calculated 
under the formula 
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The structure of the formula shows that М2 is calculated in the assumption of constant factor of 
the body form along all trajectory. It is considered that the meteoric body has the form of sphere, 
and drag coefficient cd is equal 2. Attention is attracted by a huge difference of values of M∞ and 
M2 (in designations of Tables in work of Ceplecha, (1978)), where M∞ is calculated under the 
photometric formula with use of factor τ, which was applied earlier at calculation of photometric 
masses of fireballs from the Prairie network, USA (McCrosky et al., 1979). 
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It is simple to define the values β providing such significant mass loss. Accepting in (18) 

Me = M∞, M = M2, v = V2/V∞, we shall receive values β under Tables in work of Ceplecha, (1978). 
Results of processing of 17 variants are resulted in Table 5. 

It follows from data in Table 5 that condition M∞ = Mph sharply increases value β. From 
here it follows that the given condition mismatches the validity, and the parameter β should be 
defined from approximation of trajectories, as it is made in the present work for fireballs from 
the Canadian network and in the work (Kulakov and Stulov, 1991) for fireballs from the Prairie 
network, USA. We shall pay attention to that circumstance that the first line in Table 5 is 
received at the limiting assumption of full rotation of bodies in flight, when μ = 2/3. At refusal of 
this assumption, i. e. at μ <2/3 the difference of 1-st line from 2-nd and 3-rd will be stronger. 

 
VI. Gistogramms for Ablation Coefficient from the Prairie and 

Canadian Networks 

Data in Table 1 allow to receive easily values of ablation coefficient σ = 2β/V2. It is 
interesting to compare gistogramms of σ for fireballs from the Canadian and Prairie networks. 
Values of σ for fireballs from the Prairie network were calculated earlier and contain in 
monograph of Stulov et al., (1995). Other variant of a method of the least squares was applied 
for determination of parameters α and β. The method provides the minimal value of the square-
law sum 
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where yi, vi are observational data, and values of v(yi, α, β) are calculated by means of inverse 
function of (3). By preparation of this paper, calculations have been lead again by means of a 
variant of method Q3, the formula (4) - (8). Values of σ have changed a little, however only in 
three cases this change exceeds 10%. Results of these calculations σ together with numbers for 
fireballs from the Prairie network and entry velocity Ve are resulted in Table 6 (McCrosky et al., 
1979). 

Authors of observations of fireballs from the Prairie network specify (McCrosky et al., 
1978) that in Tables used by us (McCrosky et al., 1979), sporadic meteors are basically included, 
and components of meteoric streams were not considered. 

Distribution of fireballs on intervals of σ is resulted in Table 7. The line of the Canadian 
network contains all fireballs of Tables 1, except for 204 because of extreme value of σ = 0.037 
s2/km2, i.e. the general number n = 21. Lines of the Prairie network contain data for 17 fireballs 
resulted in Table 6. 

The basic conclusion of this comparison consists in the fact that σ for fireballs from the 
Canadian network are essentially less, than σ for fireballs from the Prairie network. We shall 
remind communication σ with other, more elementary parameters describing high-speed 
movement of a body in the atmosphere: σ = сh/cdH*. The heat exchange coefficient ch increases 
with increase in velocity (Stulov et al., 1995). Comparison of data in Tables 1 and 6 shows that 
fireballs from the Canadian network have on the average higher entry velocity, than fireballs 
from the Prairie network. So, the conditions Ve < 19 km/s and Ve > 19 km/s give for the Canadian 
network 11 and 10 fireballs whereas the same quantity for the Prairie network are 14 and 3, 
accordingly. Therefore values ch are "on the average" above for fireballs from the Canadian 
network. As to values of drag coefficient cd, it is necessary to consider it constant and close to 
unit if there are no additional independent data about a form of meteoric bodies and their 
fragments. Therefore the distribution of σ resulted in table 7  testifies to that values of effective 
enthalpy of evaporation for fireballs from the Canadian network is essential more than this 
parameter for fireballs from the Prairie network. Apparently, sporadic meteors are on the average 
less heat-resistant, than components of meteoric streams. Certainly, this important conclusion 
requires additional check. 
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VII. Conclusion 

Processing of fireballs from the Canadian network has shown that the so-called 
photometric mass mismatches the physical maintenance of movement of a meteoric body in the 
atmosphere. Earlier similar results have been received for fireballs from the Prairie network,  
USA and the Beneshov bolide from the European network (Barry and Stulov, 2003). 

Researches of fireballs from the Canadian network will be continued. 
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Fig. 1. Approximation of a trajectory by function Y (v); continuous lines are the exact solution 

(1), drawing lines are function Y (v) (3). 

 9



 
Fig. 2. Approximation of observant trajectories for fireballs 018 (a) and 567 (b); continuous lines 

are the formula (3), points are data of observation. 
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Fig. 3. Dynamic masses for fireballs 872 (a), 219 (b), 567 (c), 204 (d), 840 (e), 018 (f) in the 

bottom part of their a trajectories. 
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