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MITIGATION APPROACHMITIGATION APPROACHMITIGATION APPROACHMITIGATION APPROACH

EXPLOSIVE

Nuclear Explosives - Standoff

Nuclear Explosives - Surface 

Nuclear Explosives – Subsurface

Magnetic Flux Compression

HIGH THRUST

Chemical Propulsion

SpaceTug (VASIMR)

SIMPLE IMPACTOR

Kinetic Impactor (without Explosive)

Kinetic Impactor (with Explosive)

NEO-to-NEO Collision

LOW THRUST

Gravity Tractor

NEO Painting

NEONet

Mass Driver

Laser Ablation

Solar Sail

Solar Mirror / Concentrator

Space Pebbles

NEPTug (Ion or Hall)

DESCRIPTIONDESCRIPTIONDESCRIPTIONDESCRIPTION

Standoff nuclear explosion / vaporization

Surface nuclear explosion

Subsurface nuclear explosion

EMP generates mag force

Attach chemical rocket

Nuclear powered electric propulsion (VASMIR)

Impact with spacecraft

Impact with spacecraft and on-board explosive

Collide with another NEO

Deflect with spacecraft's gravity

Paint to increase Yarkovsky effect

Momentum net

Ejects materials from the surface

Deflect with Earth/space-based laser

Reflect solar photons

Reflects and concentrate sunlight to deflect

Metallic swarm kinetic impact

Nuclear powered electric propulsion (Ion or Hall)

O     P     T     I     O     N     S
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- NASA Institute for Advanced Concepts (NIAC) Phase I Study (November 2003 – April 2004)

- Original Concept Features

- Coring drill and ejecta conveyor

- Deployable Mass Driver and strongback (approximately 10 m tall)

- Small space-based nuclear reactor for efficient power (<45 kWe)

- Self-anchoring landing legs

- In-space Delta-V of 5.6 km/s in separate in-space stage (assumes pre-deploy in L4/L5, Delta IV-H launcher)

- Ejecta velocities ~180 m/s, mass ~2 kg/shot, rate ~1 shot/minute, surface action time ~60 days

M ADMEN

Modular asteroid deflection mission ejector node

Reference: Charania, A., Graham, M., Olds, J. R., "Rapid and Scalable Architecture Design for Planetary Defense," AIAA-2004-1453, 1st Planetary Defense Conference: Protecting Earth from 
Asteroids, Orange County, California, February 24-27, 2004 [Available at www.sei.aero]. 
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− Allows Precise and Controllable Application of Delta-V
− Delta-V is applied slowly over time, avoiding uncertainties of direct impactors

−Uses In-situ Propellants
− Brings power supply to the asteroid, not Earth-derived propellants

− Yields long duration surface operations for low initial mass

− Avoids Political and Societal Concerns of Nuclear Weapons in Space
− Nuclear detonation options may prove to be internationally unacceptable

− Scalable to Small or Large Asteroids
− Individual landers can be scaled up or down

− Overall quantity of landers can be scaled to meet the need

−Offers Natural Redundancy and System-Level Robustness
− Multiple MADMEN landers sent to one target ensures mission success

− Use of modular construction, reduces overall cost of production

− Swarm-based autonomous control of spacecraft reduces ground control burden

A     D     V     A     N     T     A     G     E
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Nuclear 

reactor power 

system with 

high power 

capacitors

Mining 

system with 

coring drill 

tube 
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Self-

Assembling 

Mass 

Ejection 

Tube

Ejecta bucket 

and ore 

processing

Attitude and 

landing 

propulsion 

system
Note: Landing legs, mass ejection tube, and radiators collapse for launch vehicle packaging
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SEVERAL MODIFICATIONS TO 2003-2004 MADMEN CONCEPT DESIGN

Mission Approach

− Allow rendezvous many years ahead of Impact, longer lead time (lowers 
Delta-V)

−Reduce required miss distance by ~5x (to 5 Earth radii from 0.5 Earth-moon 
distances)

− Adopt direct launch approach (no pre-staging in L4/L5)

− Allow long periods of surface operations (up to one year)

−Replace in-space cryogenic upper stage with simple cruise/braking stage 
approach

−Use of alternate launch vehicles

Modeling Improvements

−N-body trajectory propagator with low thrust perturbation (vs. previous two-
body, final approach analyses)

− Improved spacecraft and mass driver sizing estimates and power balances

− Improved parametric scaling of lander and cruise stage for quick trade studies

U     P     D     A     T     E     S
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−MADMEN multiple mass driver concept applied to two case studies that 
reflect a potential range of mitigation threats

−Case Study 1: Target = D’Artagnon

− As modified from 2004 Planetary Defense Conference

− Adjusted some parameters of orbital elements to reflect discovery date of January 
1, 2017 and an impact date of April 1, 2022

− Semi-major axis, eccentricity, and inclination preserved from original dataset, but 
position angles adjusted to reflect new dates of discovery and impact

− Assumed use of NASA Ares V Launch Vehicle in this timeframe

−Case Study 2: Target = (99942) Apophis

− Current high interest object

− Smaller Delta-V imparted to target than case study 1

− Use of Space Exploration Technologies (SpaceX) Falcon 9 launch vehicle

C     A     S     E          S     T     U     D     I     E    S
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ValueItem

Aten | Type S Asteroid
130 m (irregular) | 2.7x109 kg | 3.0 g / cm3 | 19 minutes

Class | Type
Size | Mass | Density | Spin Period

Semi-major axis (a): 0.90220435 AU, Eccentricity (e): 0.30245951
Inclination (i): 4.78620700°, Longitude of Ascending Node: 191.15627122°

Argument of Periapsis: 227.57988257°, Mean Anomaly Angle: 27.28864277°
Epoch: January 1, 2017 0.0 UT

Approximate orbital elements at time of 
detection

April 1, 2022 Expected Date of Impact

MADMEN D'Artagnan Deflection ∆V
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- Time of Flight = 225 days
- Departure C3=  20 km2/s2

- Arrival C3 = 8.737 km2/s2

- Cruise stage Delta-V = 3,024 m/s
- Includes 2.5% Delta-V margin 

Launch Date = 04-20-2017

Arrival Date = 12-01-2017

D’Artagnon

Earth

- Individual MADMEN lander wet mass = 1,650 kg
- Mass of 5 cruise stages and landers =  30,600 kg
- Delta-V applied to D’Artagnon = 0.125 m/s
- Shift in miss distance = 5 Earth radii
- Ejection velocity = 570 m/s
- Shot frequency = 3 per minute (when firing)
- Hole diameter = 5.64 cm per hole
- Nominal mission surface action time = 365 days
- Estimated Life Cycle Cost = $2,256 M (FY2007) 
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EJECTION SUMMARYSPACECRAFT SUMMARY

− Delta-V applied to D’Artagnon = 0.125 m/s (for 
a shift in miss distance of 5 Earth radii arriving 
around mid-2018 or earlier)

− Ejecta mass per shot = 0.50 kg (tennis ball-
sized)

− Ejection velocity = 570 m/s

− Mass driver length (total of acceleration 
segment and deceleration segment) = 15 m

− Shot frequency = 3 per minute (when firing)

− Total shots required to be fired = ~1,180,000

− Hole diameter = 5.65 cm per hole

− Hole depth = 4.70 m (constrained to be <=less 
5.75 m)

− Nominal surface action time = 365 days (five 
landers, 15% duty cycle each) longer with fewer 
landers

− SAFE-400-class nuclear reactor power = 16.5 
kWe (92 kW thermal), reactor activated once 
the MADMEN rendezvous with D¹Artagnon

− Five landers, one launch (using Ares V)

− Predicted payload capability of 43,000 kg to that 
c3 for the Ares V, based on publicly-released Ares 
V information

− MADMEN landers use monoprop hydrazine for 
propulsion, cruise stage uses biprop NTO/MMH

− 15% duty cycle for each lander once on the 
surface due to asteroid rotation (continuous 
drilling throughout)

− MADMEN lander wet mass = 1,650 kg each

− Combined mass of all five cruise stages and 
lander =  30,600 kg (with a payload adapters, the 
overall launch mass margin = 42.81%)

− Base diameter = 3.5 m (base of spacecraft bus)

− Available Delta-V directly on the lander (orbital 
maneuvering, landing) = 220 m/s

− Cost and Reliability

− Estimated ROM Life Cycle Cost = $2,256 M 
(FY2007), includes technology development, 
DDT&E, acquisition, launch, and operations

− Lander Only DDT&E Cost: $723.2 M (FY2007)

− Lander Only TFU Cost: $118.5 M (FY2007)

− Over 99% chance of success (if at least 3 out of 5 
landers required), from 99.38% to 99.95% 
(probability of individual failure from 10% to 20%) 
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MADMEN Apophis Deflection ∆V
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C.     S.     2     :     A     P     O     P     H     I     S

ValueItem

Aten | Type S Asteroid
250 m (irregular) | 2.1x1010 kg | 2.6 g / cm3 | 30.54 hours

Class | Type
Size | Mass | Density | Spin Period

Semi-major axis (a): 0.92226142 AU, Eccentricity (e): 0.19105942
Inclination (i): 3.33131464°, Longitude of Ascending Node: 204.45915230°

Argument of Periapsis: 126.38557131°, Mean Anomaly Angle: 307.36307853°
Epoch: April 10, 2007 0.0 UT

Approximate orbital elements at time of 
detection

UnknownExpected Date of Impact
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- Time of Flight = 346 days
- Departure C3=  15 km2/s2
- Arrival C3 = 1.6 km2/s2
- Cruise stage Delta-V = 1,296 m/s
- Includes 2.5% Delta-V margin 
- One additional solar orbit before arriving at 
Apophis in 2023

Launch Date = 03-31-2022

Arrival Date = 03-15-2023

Apophis Earth

- Individual MADMEN lander wet mass = 455 kg
- Mass of cruise stage plus 2 landers =  940 kg
- Delta-V applied to Apophis = 1.3E-4 m/s
- Shift in miss distance = 60 km in 2029 keyhole pass
- Ejection velocity = 150 m/s
- Shot frequency = 2 per minute (when firing)
- Hole diameter = 2.52 cm per hole
- Nominal mission surface action time = 140 days
- Estimated Life Cycle Cost = $815.2 M (FY2007) 
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EJECTION SUMMARYSPACECRAFT SUMMARY

− Delta-V Applied to Apophis = 1.3E-4 m/s (for a 
shift of 60 km in miss distance in 2029 keyhole 
pass)

− Ejecta mass per shot = 0.15 kg (golf ball sized)

− Ejection velocity = 150 m/s

− Mass driver length (total of acceleration 
segment and deceleration segment) = 3 m

− Shot frequency = 2 per minute (when firing)

− Total shots required to be fired = 79,333

− Hole diameter = 2.52 cm per hole

− Hole depth = 1.86 m

− Nominal surface action time = 140.4 days (two 
landers, 15% duty cycle each), about 280.8 
days for one lander working alone (two landers 
for redundancy)

− HOMER-class nuclear reactor power = 1.6 kWe
(8.6 kW thermal), reactor activated once the 
MADMEN rendezvous with Apophis

− Two landers, two launches (using SpaceX
Falcon 9) 

− Calculated payload capability of 1,350 kg  to c3 of 
15 km/s2 for the Falcon 9

− MADMEN landers use monoprop hydrazine for 
propulsion, cruise stage uses biprop NTO/MMH

− Base diameter = 1.25 m (base of spacecraft bus)

− 15% duty cycle for each lander once on the 
surface due to asteroid rotation (continuous 
drilling throughout)

− MADMEN lander wet mass = 455 kg each

− Combined mass of cruise stage and lander = 940 
kg each (with a payload adapters of 47 kg, the 
overall launch mass margin = 37.5% per launch)

− Available Delta-V directly on the lander (orbital 
maneuvering, landing) = 220 m/s

− Cost and Reliability

− Estimated ROM Life Cycle Cost = $815.2 M 
(FY2007), includes technology development, 
DDT&E, acquisition, launch, and operations

− Lander Only DDT&E Cost: $317.7 M (FY2007)

− Lander Only TFU Cost: $48.8 M (FY2007)

− Over 96% chance of success (if at least 1 out of 2 
landers required), from 96% to 99% (probability of 
individual failure from 10% to 20%) 
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−What target asteroid characteristics must we know well for this concept to 
work?

−Required

− Orbital elements (to estimate velocity perturbation required)

− Gross mass properties (mass, center of mass, density)

− Spin state (spin axis orientation and rate)

− Surface composition and hardness (for landing and anchoring)

− Subsurface composition (to about 2-3 meters, for drilling)

−Nice to Have

− Surface topography  (for selection of preliminary landing sites)

C     H     A     R     A     C     T     E     R     I     Z   A     T     I     O     N
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There are certainly technology challenges with this concept, but we believe that 
with proper funding, all issues can be resolved in 5-10 years yielding an initial 

operating capability (IOC) in 2015-2020

− Drilling
− Uncertainty of drilling/mining in near zero g/no atmosphere
− Drilling/core rate for an asteroid must be estimated

− Landing/anchoring
− Safe landing and secure attachment of lander to the surface

− Power Source
− LANL work in space reactors is a good start 

− On-site dust
− Effect on mining/coring/drilling/mass ejecting operations
− Specific effects include thermal systems degradation, seal failure, vision obscuration, 
competing processes, etc.

− General Technology Needs
− Long life surface hardware requirements
− AI technology for autonomous swarm operation in space 

C     H     A     L     L     E     N     G     E     S
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−Candidate precursor mission
− Evaluate and test technologies in-situ

− Evaluate intentional change in asteroid trajectory using mitigation technique

− Test on small, non-binary, non-earth-crossing asteroid (mass < 1E9 kg)

−Would prefer radar observations of candidate target

− Potential target: 2002 XY38 (Aten, diameter = 70-160 m)  

−Minimum of two landers
− Redundancy

− Potential swarm communication

− Different attachment, drilling techniques

− Small launch vehicle
− Nominal launch on SpaceX Falcon 1 or 9

− Schedule and cost
− Launch date between 2011-2015

− Estimated budget cap is 1-2 times price of Discovery/Scout class mission

P     R     E     C     U     R     S     O     R
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−General Modeling Improvements to MADMEN concept
− Refinement of trajectory, Life Cycle Cost (LCC), and reliability analysis

− Discrete Event Simulation (DES) of MADMEN swarm

−Resolution of Open Issues at the System Level
− Resolve question of suitability of approach to rock pile or metallic type NEA target 
versus more common stony-type targets

− Resolve effect of asteroid spin/movement on shot direction and duty cycle

− End-state and potential danger of ejecta from mass driver operations

− SpaceWorks Engineering, Inc. (SEI) is pursuing partnerships with relevant 
organizations to address various technology challenges

− SEI is leading a team to respond to 2007 Apophis Mission Design 
Competition sponsored by The Planetary Society

−Continued Public Outreach and Awareness Activities 
− SEI theme web page: www.sei.aero/planetarydefense

− planetarydefense.blogspot.com

O     N     G     O     I     N     G          W     O     R    K
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Falcon 9 Payload vs c3
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