

I n s i d e M a c O S X

Java Development on Mac OS X

Java 2 Platform, Standard Edition Version 1.3.1

September 2002

 Apple Computer, Inc.
© 2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleScript,
Aqua, Cocoa, iBook, Macintosh,
PowerBook, QuickTime, and
WebObjects are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Carbon, Finder, and Quartz are
trademarks of Apple Computer, Inc.

Java and all Java-based trademarks
are trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.
OpenGL is a registered Trademark of
Silicon Graphics, Inc.
Simultaneously published in the
United States and Canada

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

 Apple Computer, Inc. September 2002

Contents

Figures, Listings, and Tables 7

Chapter 1

About This Book

11

How to Use This Book 12
Other Resources 13
Filing and Tracking Bugs 14

Chapter 2

How Java Is Implemented in Mac OS X

15

Java Integration in the Operating System 15
What Is Included 18
Java 2D Graphics Implementation 19
The Virtual Machine 20

Performance Profiling Tools 21
Nonstandard Virtual Machine Options 21
The Java Native Interface 22

Environmental Differences 24
Finding JAVAHOME 25
Where to Put Extensions 25
Where to Put Preferences 26
Setting the Classpath 26
Java Output 26

Chapter 3

Deployment Options

27

Distributing Your Application as a JAR File 27
Mac OS X Java Applications 28

Application Bundles 29
Property List Attributes for Java Applications 31
Setting the Java Runtime Properties for an Application Bundle 33

4

 Apple Computer, Inc. September 2002

C O N T E N T S

Setting Runtime Properties in Project Builder 34
Setting Runtime Properties in MRJAppBuilder 34

Java Web Start 34
Applets 36

Accessing Mac OS X–Specific Properties From Applets 36
Java Applet Plug-in 36

Taking Advantage of the Java Applet Plug-in with HTML 37
Benefits of Using the Java Applet Plug-in 38

Chapter 4

The Development Environment

41

Java Development Tools 41
Standard JDK Tools 41

Displaying a Java Stack Trace 43
Other Command-Line Tools 44
GUI-Based Tools 44

Project Builder 44
MRJAppBuilder 45
Applet Launcher 47
Other Tools 48

Where to Get the Tools 49

Chapter 5

Cross-Platform Practices for Great Native Behavior

51

The Aqua Look and Feel 51
Placing and Painting Components 52

Layout Managers 53
Sizing Components 53
Coloring Components 53

Windows and Dialogs 54
Use of the Multiple Document Interface 54
Windows With Scroll Bars (Using JScrollPanes) 55
File Choosing Dialogs 56

Dealing With Bundles in Mac OS X 57
Menus 60

Menu Shortcuts 60

C O N T E N T S

5

 Apple Computer, Inc. September 2002

Menu Item Icons 62
Contextual Menus 62

Event Handling 63

Chapter 6

Using Native Features of Mac OS X in Java Applications

65

Modifying the Default Settings for Hardware Graphics Acceleration 65
Advanced Options 66
Video Cards Designation Strings 67

Specifying a Name and Icon for Command-Line Applications 68
Using the Macintosh Menu Bar 69

The Window Menu 70
The Application Menu 70

More MRJ Handlers 72
Localizing Packaged Java applications on Mac OS X 72
QuickTime for Java 73
Java Core Audio Packages 73
Java Spelling and Speech Frameworks 73
JDirect 74

Human Interface Toolbox Synchronization 74
Debugging Features for JDirect 75
MethodClosureUPP Not Supported 75
JDirect Access to Bundles 75

Embedding Applets in Native Applications 76
Cocoa Java 77

Appendix A

Project Builder Tutorial

79

Building a Java Application With Project Builder 79
The Makeup of a Project Builder Project 79
Building a Java Project 81
Adding Your Source Files 83
Modifying the Application Parameters 88

Building Applets With Project Builder 93

6

 Apple Computer, Inc. September 2002

C O N T E N T S

Appendix B

MRJAppBuilder Tutorial

95

Building a Basic Application 95
Building a More Robust Application 98
Making Your Application More Mac-like 100

Java Properties Pane 100
Mac OS X Pane 103

Appendix C

Mac OS X Java System Properties

105

Java Virtual Machine Properties 105
Mac OS X Application Properties 107

Mac OS X–Specific Properties 109

Glossary

113

Index

117

7

 Apple Computer, Inc. September 2002

Figures, Listings, and Tables

Chapter 2

How Java Is Implemented in Mac OS X

15

Figure 2-1 Architecture of Mac OS X 16
Figure 2-2 Metal and Aqua look and feel on Mac OS X 17
Figure 2-3 Mac OS X as a Java development platform 19
Table 2-1 HotSpot VM options 22

Chapter 3

Deployment Options

27

Figure 3-1 Show application bundle contents 29
Figure 3-2 Contents of a Java application bundle 30
Figure 3-3 Java Web Start integration 35
Figure 3-4 Effect of HTML tags in Mac OS X 10.2 37
Listing 3-1 Info.plist file for simple Java application 31
Table 3-1 Interpretation of HTML tags in common Mac OS X browsers 38

Chapter 4

The Development Environment

41

Figure 4-1 MRJAppBuilder 46
Figure 4-2 Tools in /Developer/Applications 48

Chapter 5

Cross-Platform Practices for Great Native Behavior

51

Figure 5-1 java.awt.FileDialog 56
Figure 5-2 javax.swing.jFileChooser 57
Figure 5-3 Application displayed as an atomic object 58
Figure 5-4 Application displayed as a directory 59
Listing 5-1 Setting JScrollBar policies to be more like Aqua 55
Listing 5-2 Explicitly setting KeyStrokes based on the host platform 61
Listing 5-3 Using getMenuShortcutKeyMask to set meta keys 61
Listing 5-4 Using isPopupTrigger to detect contextual menu activation 63

8

 Apple Computer, Inc. September 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

Chapter 6

Using Native Features of Mac OS X in Java Applications

65

Figure 6-1 Application menu for a Java application in Mac OS X 71
Figure 6-2 Java Applet Plug-in versus Java Embedding Framework 76
Table 6-1 Video-card designation strings 68

Appendix A

Project Builder Tutorial

79

Figure A-1 Project folder contents 80
Figure A-2 Result of building a default project 82
Figure A-3 Generic Java icon 82
Figure A-4 Default files in a new Java Swing application 84
Figure A-5 Delete References alert 85
Figure A-6 Selecting files to add to a Java project 86
Figure A-7 Copy items into project folder option 87
Figure A-8 Contents of a built application 88
Figure A-9 Target settings 90
Figure A-10 Pure Java-Specific settings 91
Figure A-11 Expert View 92
Figure A-12 Default setting for live resizing 93
Figure A-13 Applet Launcher 94

Appendix B

MRJAppBuilder Tutorial

95

Figure B-1 MRJAppBuilder Application pane 97
Figure B-2 A successful build 98
Figure B-3 Merge Files pane 99
Figure B-4 FileChooserDemo application with relics 101
Figure B-5 Modifying the growbox.intrudes property 102
Figure B-6 com.apple.mrj.application.growbox.intrudes=true 103
Figure B-7 Application bundle contents 104

Appendix C

Mac OS X Java System Properties

105

Table C-1 JVM properties 106
Table C-2 required Mac OS X application properties 107

F I G U R E S , L I S T I N G S , A N D T A B L E S

9

 Apple Computer, Inc. September 2002

Table C-3 Application launch properties 108
Table C-4 System properties related to the graphical user interface 110

10

 Apple Computer, Inc. September 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

11

 Apple Computer, Inc. September 2002

C H A P T E R 1

1 About This Book

With Mac OS X, Apple delivers a Java implementation that adds value for both
developers and end users. Java is fully integrated into Mac OS X, which offers
developers easy access to the Aqua user interface, UNIX-based tools and
technologies, QuickTime, OpenGL, and Cocoa. This built-in flexibility allows
developers to create robust, well-designed applications that offer users a wide
range of rich features and functionality.

This book provides an overview of Java development on Mac OS X and discusses
the available features. It also provides simple examples on using the development
tools available with Mac OS X.

This book is for the Java developer interested in writing Java applications on Mac
OS X version 10.2 with Java 2 Standard Edition (J2SE) version 1.3.1. It does not
discuss Java 2 Standard Edition version 1.4 on Mac OS X. Information on previous
versions of Java on Mac OS X can be found in the Release Notes at http://
developer.apple.com/techpubs/java. It is primarily geared toward developers of
pure Java applications, but it will also be useful for Cocoa Java development and
WebObjects Java development.

This is not a tutorial for the Java language. If you are not already proficient in Java,
this document will still be helpful to you but it will not teach you about the Java
language and J2SE packages. Many resources exist in print and on the Web for
learning the Java programming language. If you are new to programming in Java,
you may want to start with one of Sun’s tutorials available online at http://
developer.java.sun.com/developer/onlineTraining/new2java/.

http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.apple.com/techpubs/java
http://developer.apple.com/techpubs/java

12

How to Use This Book

 Apple Computer, Inc. September 2002

C H A P T E R 1

About This Book

How to Use This Book

Overall, the purpose is document to highlight how Java development in Mac OS X
may be different if you are accustomed to Java development on other platforms. It
does not attempt to present a conclusive overview of Java itself. It is meant as a
supplemental guide to help you save time and development effort. It introduces
you to the tools available to you, discusses some details of how Java is implemented,
points out potential trouble spots, and provides some reference documentation.

This book has information for many different types of Java developers. To help you
determine what information is important for you the following listing provides an
overview of the contents of the following chapters:

�

“How Java Is Implemented in Mac OS X” (page 15) Presents a broad overview
of how Java works in Mac OS X. It also highlights some areas where things differ
between Java in Mac OS X and other platforms. This chapter has many
important details for anyone doing Java development on Mac OS X. It is a good
place to begin if you don’t have specific questions, but want an overview of what
is available.

�

“Deployment Options” (page 27) Reveals the four suggested deployment
vehicles for your Java applications on the Mac OS X operating system. If you
have a Java application that you want to distribute on Mac OS X, this chapter is
important reading. It discusses not only details to be aware of in the standard
distribution methods, but also presents some unique to Mac OS X.

�

“The Development Environment” (page 41) If you are new to Java development
on Mac OS X, this chapter provides important background information on what
tools are available to you.

�

“Cross-Platform Practices for Great Native Behavior” (page 51) Discusses some
considerations you should make while designing your applications so that they
will behave just as well on Mac OS X as they do on other platforms.

�

“Using Native Features of Mac OS X in Java Applications” (page 65) Explores
some of the options available to you in Mac OS X that are not available on other
platforms. Some things discussed in this chapter will tie your application to Mac
OS X specifically, while other things will help you to add value to your Java

C H A P T E R 1

About This Book

Other Resources

13

 Apple Computer, Inc. September 2002

applications on Mac OS X without affecting your application’s cross-platform
compatibility. The information in this chapter may be important if you are
designing a new application or modifying an existing one.

�

“Project Builder Tutorial” (page 79) If you want to take advantage of the free
Project Builder IDE for you Java development, this is a useful place to start.

�

“MRJAppBuilder Tutorial” (page 95) This is a tutorial for anyone distributing a
Java application on Mac OS X.

�

“Mac OS X Java System Properties” (page 105) Provides a listing of the common
Java system properties useful in Mac OS X.

Other Resources

This document and other Java documentation for Mac OS X, including the javadoc
API reference, is available online at http://developer.apple.com/techpubs/java. A
subset of this documentation is installed in

 /Developer/Documentation/Mac OS X/
Java

 on a Mac OS X system with the Mac OS X Developer Tools. You can view this
documentation through a Web Browser or through Project Builder (from Project
Builder’s Help menu, choose Developer Help Center).

The main Java technology page http://developer.apple.com/java contains many
links to information about Java development in Mac OS X.

The

java-dev

 mailing list is a great source of information on a wide range of Java
development topics in Mac OS X. You can sign up for this list at http://
lists.apple.com.

Sun’s Java site, http://java.sun.com is the essential reference point for Java
development in general.

http://developer.apple.com/techpubs/java
http://developer.apple.com/java
http://lists.apple.com
http://lists.apple.com
http://java.sun.com

14

Filing and Tracking Bugs

 Apple Computer, Inc. September 2002

C H A P T E R 1

About This Book

Filing and Tracking Bugs

If you find issues with the implementation of Java that are not represented in this
document or want to follow the resolution of an issue, you may do so online
through Radar, Apple’s bug tracking system. To access Radar, you will need an
Apple Developer Connection (ADC) account. You can view the ADC membership
options, including the free online membership at, http://developer.apple.com/
membership/index.html. With an ADC membership, you can file and view bugs at
http://bugreport.apple.com. When filing new bugs for Java on Mac OS X, please
use Java (new bugs) for the Component and X as the Version.

http://developer.apple.com/ membership/index.html
http://developer.apple.com/ membership/index.html
http://bugreport.apple.com

Java Integration in the Operating System

15

 Apple Computer, Inc. September 2002

C H A P T E R 2

2 How Java Is Implemented in Mac
OS X

Java is included in every copy of Mac OS X and Mac OS X Server. Mac OS X
provides full support for Java 2 Platform, Standard Edition (J2SE), and support for
much of Java 2 Platform, Enterprise Edition (J2EE).

Because of the emphasis Apple has placed on integrating Java into the operating
system, there are many benefits to developing and deploying Java applications on
Mac OS X rather than other platforms. In Mac OS X, Java is not an add-on feature,
but an integral part of the operating system. This means that you do not need to deal
with installing and configuring the Java Runtime Environment (JRE) or the Java
Development Kit (JDK) as you, or the end users of your application, might need to
on other platforms. In addition to the Java pieces you are already familiar with,
Apple provides extensions and enhancements to these standard Java APIs as well
as Java access to some of Apple’s other technologies. With Java on Mac OS X, Apple
provides all that you expect in a standard Java 2 implementation while providing
the extra value that makes it better on the Macintosh for you as a developer and for
your customers.

Java Integration in the Operating System

At the core of Mac OS X lives a BSD-style UNIX-based operating system called
Darwin. On top of that, Apple has built a collection of fundamental technologies for
presenting graphics and sound to users far beyond what has been traditionally
available in a UNIX-based operating system. Further collections of tools, event
loops, and functions/methods yield high-level APIs for application developers.
These include:

�

Carbon for traditional Macintosh developers

16

Java Integration in the Operating System

 Apple Computer, Inc. September 2002

C H A P T E R 2

How Java Is Implemented in Mac OS X

�

Cocoa, an object-oriented application development environment

�

Java, an object-oriented environment for building cross-platform applications

Figure 2-1 depicts the conceptual layout of the Mac OS X operating system. A more
extensive analysis of the system as a whole is available in

Inside Mac OS X: System
Overview

.

Figure 2-1

Architecture of Mac OS X

One of the most obvious advantages of the integration of Java into the operating
system can be seen in the user interface of any Swing application. Java on Mac OS
X includes a default Aqua look and feel for your Swing applications. You can see
from Figure 2-2 how this can really make your Java applications look great
compared to the default look and feel, Metal.

Darwin

Cocoa CarbonJava

AppleScript

Quartz QuickTimeOpenGL

Aqua

C H A P T E R 2

How Java Is Implemented in Mac OS X

Java Integration in the Operating System

17

 Apple Computer, Inc. September 2002

Figure 2-2

Metal and Aqua look and feel on Mac OS X

Because Mac OS X is a UNIX-based operating system, you have access to BSD tools
and technologies useful in software development. You are working with the
foundation of a robust, powerful operating system that gives you preemptive
multitasking and protected memory.

In Mac OS X you can also take advantage of the operating system’s other
fundamental features. For example, in Mac OS X you can take advantage of the
cross-platform QuickTime API through QuickTime for Java. Apple also provides
Java access to the Core Audio framework of Mac OS X, OpenGL, Quartz, the Mac
OS X font implementation (with support for OpenType, PostScript Type I and
TrueType fonts), the Mac OS X spelling and speech frameworks, and the
Foundation and Application Kit frameworks of Cocoa.

18

What Is Included

 Apple Computer, Inc. September 2002

C H A P T E R 2

How Java Is Implemented in Mac OS X

What Is Included

Mac OS X ships with the Java 2 Platform, Standard Edition (J2SE) 1.3.1. Full support
of Java 2 means that there is first-class support for Swing, the Collections
framework, the Accessibility API, and other APIs from Sun. Support for applets that
require Java 2 is also provided. You will also find implementations of the Java2D
graphics architecture and the policy-based security model. In addition to the
standard parts of J2SE, Mac OS X includes Java Web Start and the security
frameworks as well as some packages that were formerly available as part of the
Java 2 Enterprise Edition (J2EE) like Remote Method Invocation (RMI) over IIOP,
the Java Naming and Directory Interface (JNDI), and the Java Database
Connectivity (JDBC) model.

The Java implementation is installed in

 /System/Library/Frameworks/
JavaVM.framework

. This includes the virtual machine, the command-line tools, the
runtime classes, and the API documentation. Additional tools and documentation
are included with the free Mac OS X Developer Tools and are installed in

/
Developer/Tools

 and

/Developer/Documentation

, respectively.

The basic command-line tools are installed in

/System/Library/Frameworks/
JavaVM.framework/Commands

 with links from

/usr/bin

 so that your scripts and tools
work on Mac OS X like they would on other platforms.

For the most part, the Java 2 Platform Standard Edition version 1.3.1 works on Mac
OS X like it does on other platforms. The standard packages you expect to find are
all included in every installation of Mac OS X, as are the basic development tools.
With the Mac OS X Developer Tools installed, you have a complete Java
Development environment as illustrated in

C H A P T E R 2

How Java Is Implemented in Mac OS X

Java 2D Graphics Implementation

19

 Apple Computer, Inc. September 2002

Figure 2-3

Mac OS X as a Java development platform

Although the java.sound packages are included with Java in Mac OS X, you cannot
currently use them for sound input. You can work around this by using Mac OS X
native audio system. You can find more information about the audio architecture of
Mac OS X at http://developer.apple.com/audio. Specific options for providing
audio functionality to your Java application in Mac OS X include these:

� Use QuickTime for Java-based services. This works on Mac OS 9, Mac OS X, and
Windows.

� Use the Core Audio framework. This API is for Mac OS X only and provides Java
classes to access the underlying Core Audio platform services for audio and
MIDI in Mac OS X.

� Use JNI to provide a native binding to the Core Audio framework directly.

Java 2D Graphics Implementation

The Mac OS X implementation of the Java2D API is based on Apple’s Quartz
graphics engine. The Quartz graphics system improves drawing quality over other
platforms’ Java 2D implementation. Because Java on Mac OS X draws its graphics
with Quartz, you might notice that images drawn do not match the Sun Java 2D
implementation pixel for pixel, especially when anti-aliasing is on. This is because

Java compiler
javac

Other development
tools Java debugger Project Builder

Development tools

Java HotSpot Runtime VM

Java Runtime Environment

awtapplet langiobeans

accessibility sound

net

util

math

text

sql

corba

security naming

swing

rmi

http://developer.apple.com/audio

20 The Virtual Machine
 Apple Computer, Inc. September 2002

C H A P T E R 2

How Java Is Implemented in Mac OS X

Quartz’s anti-aliasing algorithms for both line art and text are different from Sun’s
default implementations, so the rendered pixels do not match exactly. Since
anti-aliasing is implemented through the operating system itself, it does not hinder
graphics performance. Turning it off for your Java application will probably not
affect the speed up your code.

In Mac OS X, windows are double-buffered, this includes Java windows. Java on
Mac OS X attempts to flush the buffer to the screen often enough to have good
drawing behavior without compromising performance. If for some reason you need
to force window buffers to be flushed immediately, you may do so with
Toolkit.sync.

Mac OS X provides hardware graphics acceleration for your Java Swing graphics on
computers whose video cards have 16 MB or more of video RAM. If enabled, this
technology passes Swing and Java 2D graphics calls directly to the video card. This
can result in significant speed increases for your graphics-intensive Java
applications. See “Modifying the Default Settings for Hardware Graphics
Acceleration” (page 65) for information on changing the default settings of the
hardware graphics acceleration.

Anti-aliasing is on by default for text and graphics, but it can be turned off using the
properties described in “Mac OS X–Specific Properties” (page 109), or by calling
java.awt.Graphics.setRenderingHint within your Java application. With
anti-aliasing on, drawing shapes over each other may cause different results than in
Java 1.1. For example, drawing a white line on top of a black line does not
completely erase the line; the compositing rules leave some gray pixels around the
edges. Also, drawing text multiple times in the same place causes the
partially-covered pixels along the edges to get darker and darker, making the text
look smudged.

The Virtual Machine

The Java platform for Mac OS X is based on the Java HotSpot client virtual machine
(VM) from the Sun JDK 1.3.1_03 technology train. Because the VM is based on the
HotSpot VM, synching is a low overhead operation. The VM maps Java threads

C H A P T E R 2

How Java Is Implemented in Mac OS X

The Virtual Machine 21
 Apple Computer, Inc. September 2002

directly to Mach threads. The Darwin kernel (XNU) schedules these Mach threads
as it would schedule any other threads in the system giving you true preemptive
multitasking.

One unique aspect of the Mac OS X Java implementation is its use of a technology
to enable shared generation of class files. A single shared Java archive for the Java
classes in the system is generated once. This archive is regenerated when you
update Java. Since each Java application does not need to generate an independent
archive at runtime you save both memory and CPU cycles.

The -server option to Java is different in Mac OS X than on other platforms in that
it doesn’t invoke a different VM. The Java VM is the same Java HotSpot Client VM
technology. Using the -server flag however, does change a few default settings to
values more appropriate to a server type program. For example, a different shared
archive generation is used. On Mac OS X Server -server is the default. On Mac OS
X, -client is the default.

Specific guidelines for interacting with the VM are in the following sections.

Performance Profiling Tools
To get the most out of your Java applications, you can take advantage of the
performance and profiling tools available to you in Mac OS X. Built-in profiling
support is provided in flags you can pass in to the VM at runtime. For basic CPU
monitoring and profiling, use the -Xrunhprof flag as follows:

� java -Xrunhprof:cpu=sample yourApplication

� java -Xrunhprof:monitor=y yourApplication

For allocation profiling use the -Xaprof flag. To profile a single thread use -Xprof.

Third-party tools like Borland’s Optimizeit and Hewlet Packard’s HPjmeter are also
valuable tools.

Nonstandard Virtual Machine Options
The Mac OS X Java VM includes some nonstandard VM options that you should be
aware of. Since these are nonstandard (-X) options, you should keep in mind that
these are not guaranteed to be available on other VM implementations, and could
change from release to release. These options are set by passing a -Xoptionname flag

22 The Virtual Machine
 Apple Computer, Inc. September 2002

C H A P T E R 2

How Java Is Implemented in Mac OS X

to the Java runtime (java). You can also see a list of available options by typing java
-X in a Terminal window. VM options that have important details to note about
them are outlined in Table 2-1.

The Java Native Interface
Java Native Interface (JNI) in Mac OS X works as you would expect it to on other
platforms with a couple of important details to remember.

JNI libraries are named with the library name used in the System.loadLibrary
method of your Java code prefixed by lib and suffixed with .jnilib. For example,
System.loadLibrary("hello") loads the library named libhello.jnilib.

Table 2-1 HotSpot VM options

Property Notes

-Xdock:name=applicationName Overrides the default application name
displayed in the Dock and the menu bar.

-Xincgc This option is disabled in Mac OS X version
10.2.

-Xmssize Sets the initial Java heap size. The maximum
heap limit is about 2 GB.

-Xmssize Sets the initial Java heap size. The maximum
heap limit is about 2 GB.

-Xmxsize Sets maximum Java heap size. The maximum
heap limit is about 2 GB.

-XX:+UseTLE Enables Apple’s thread local eden (TLE)
allocation. This allows for more scalable
allocation for heavily threaded applications,
greatly increasing allocation performance. It is
on by default on multiprocessor computers.

-XX:+PrintJavaStackAtFatalState Enable Java backtraces to be generated when a
crash occurs in native code. Note that this is
not guaranteed to work all the time since the
crash may destroy some critical data
structures.

C H A P T E R 2

How Java Is Implemented in Mac OS X

The Virtual Machine 23
 Apple Computer, Inc. September 2002

In building your JNI libraries, you have two options. You can either build them as
bundles or as dynamic shared libraries (sometimes called dylibs). If you are
concerned about maintaining backward compatibility with previous versions of
Java on Mac OS X, you should build as a bundle; otherwise you will probably want
to build as a dylib. Dylibs have the added value of being able to be prebound which
speeds up the launch time of your application. They are also a little simpler to build
if you have multiple libraries to link together.

To build as a dynamic shared library, use the -dynamiclib flag. Since your javah
produced .h file includes jni.h, you need to make sure you include its source
directory. Putting all of that together looks something like this:

cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers sourceFile.c

cc -dynamiclib -o libhello.jnilib sourceFile.o -framework JavaVM

To build a JNI library as a bundle use the -bundle flag:

 cc -bundle -I/System/Library/Frameworks/JavaVM.framework/Headers -o
libName.jnilib -framework JavaVM sourceFiles

For example, if the files hello.c and hola.c contain the implementations of the
native methods to be built into a dynamic shared JNI library, and it needs to be
called with System.loadLibrary(“hello”), you would build the resultant library,
libhello.jnilib, with this code:

cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers hola.c
cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers hello.c
cc -dynamiclib -o libhello.jnilib hola.o hello.o -framework JavaVM

Often JNI libraries have interdependencies. For example assume the following:

� libA.jnilib contains a function foo()

� libB.jnilib needs to link against libA.jnilib to make use of foo()

This is not a problem if you build your JNI libraries as dynamic shared libraries, but
if you build them as bundles this does not work since symbols are private to a
bundle. If you need to use bundles for backward compatibility, one solution is to
put the common functions into a separate dynamic shared library and link that to
the bundle. For example:

1. Compile the JNI library:

24 Environmental Differences
 Apple Computer, Inc. September 2002

C H A P T E R 2

How Java Is Implemented in Mac OS X

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -o
myJNILib.o myJNILib.c

2. Compile the file with the common functions:

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -o
CommonFunctions.o CommonFunctions.c

3. Build the object file for your common functions as a dynamic shared library:

cc -dynamiclib -o libCommonFunctions.dylib CommonFunctions.o

4. Build your JNI library as a bundle and link against the dynamic shared library
with your common functions in it:

cc -bundle -lCommonFunctions -o libMyJNILib.jnilib myJNILib.o

A complete example of calling a dynamic shared library from a bundle, including
both a makefile and a Project Builder project, can be found at http://
developer.apple.com/samplecode/Sample_Code/Java/JNISample.htm.

You can also access native code libraries through JDirect. See “JDirect” (page 74) for
more information on using this Mac–specific technology.

Environmental Differences

Although the Aqua user interface may belie it, behind the scenes Mac OS X is a
UNIX-based operating system. The things you expect to be there are indeed there.
At times, however, pieces might be in a slightly different spot than you expect. To

Note: Once you have built your JNI libraries, make sure to let Java know where
they are. You can do this either by passing in the path with the
-Djava.library.path option on the command line or in your information
property list, or by setting the DYLD_LIBRARY_PATH environment variable.

http://developer.apple.com/samplecode/Sample_Code/Java/JNISample.htm
http://developer.apple.com/samplecode/Sample_Code/Java/JNISample.htm

C H A P T E R 2

How Java Is Implemented in Mac OS X

Environmental Differences 25
 Apple Computer, Inc. September 2002

make your experience on Mac OS X as smooth as possible, this section looks at
where you might expect to find things on Mac OS X and also addresses some of the
issues of environment variables.

Finding JAVAHOME
Many Java applications require you to identify Java’s home directory on your
system (JAVAHOME), especially during installation. On Mac OS X this should be set to
/Library/Java/Home. You might notice that this is actually a symbolic link to /
System/Library/Frameworks/JavaVM.framework/Home. This is the real Java home
directory, but since it is owned by the system you should not modify it, nor should
you expect that users will be able to modify it on their system. This directory will be
modified by software updates from Apple so any changes you make there are
volatile. The /Library/Java/Home symlink is provided as an abstraction so that you
can be sure that your applications will continue to work when Apple updates either
the Java VM or the operating system itself. /Library/Java/Home allows access to the
/bin subdirectory where command-line tools like java and javac can be found.
These tools are also accessible through /usr/bin.

Where to Put Extensions
Java can be extended by adding custom .jar, .zip, and .class files, as well as native
JNI libraries, into an extensions directory. On some platforms this is designated by
the java.ext.dir directory. In Mac OS X, put your extensions in /Library/Java/
Extensions. Java automatically looks in that directory as it is starting up a VM.

Putting extensions in /Library/Java/Extensions loads those extensions for any user
on that particular computer. If you want to limit which users can use certain
extensions, you could put them in the user’s home directory in ~/Library/Java/
Extensions. You may need to make that directory if it does not already exist. It is
important to note that extensions in the user’s directory are loaded first, so if you
have duplicate JAR files in your user’s Library/Java/Extensions directory and the
system’s /Library/Java/Extensions directory, those in the latter directory may
overload classes in the former.

Note: You can access the command line interface to Mac OS X through the
Terminal application in /Applications/Utilities/. Terminal launches your user
shell. By default this is tcsh, an enhanced C shell. bash, a Bourne compatible-shell,
zsh, a ksh-like shell, and csh are also provided.

26 Environmental Differences
 Apple Computer, Inc. September 2002

C H A P T E R 2

How Java Is Implemented in Mac OS X

Where to Put Preferences
Some applications store their preferences in the application directory; others store
their preferences where the host platform stores its preferences. In Mac OS X, user
preferences for an application are stored in the ~/Library/Preferences directory.
System-level preferences, or preferences that should effect all users should be
stored in /Library/Preferences. The standard preference format in Mac OS X is an
XML property list, with a title of the form of a reverse URL followed by the .plist
extension, for example com.apple.ProjectBulder.plist. This directory can be
reached from Java code by appending the string Library/Preferences to the
user.home System property.

Setting the Classpath
In Mac OS X, you treat the classpath the way you would in any BSD shell. You can
use setenv classpath newClasspathAddition to add to the classpath for the duration
of the current session for that particular Terminal window. You still have to
explicitly add a reference to this variable when compiling by typing javac
-classpath %CLASSPATH filename. You can determine the current value of CLASSPATH
with the command echo $CLASSPATH. By default no CLASSPATH variable is explicitly
set for the shell, although Java knows to look in the various Library/Java/
Extensions folder for developer-supplied JAR files.

You can avoid retyping the setenv classpath command for each Terminal session
by automatically adding paths to your classpath shell startup script (.cshrc or
.tcshrc for the default tcsh shell). For example, find or create ~/.cshrc. That file
should have a line that looks similar to setenv CLASSPATH ".:/Users/username/
Projects/HelloWorld/:/Users/username/Projects/HelloWorld/HelloWorld.jar". In
this example, the current directory, the specific directory of a particular project, and
a JAR file in that directory are included in the classpath.

Java Output
When you launch a Java application from the command line, standard output goes
to the Terminal window. When you launch a Java application by double clicking it,
your Java output is displayed in the Console application in /Applications/
Utilities. Applets that use the Java Plug-in may display output in the Java Console.

Distributing Your Application as a JAR File 27
 Apple Computer, Inc. September 2002

C H A P T E R 3

3 Deployment Options

There are basically four different distribution methods for Java applications in Mac
OS X. You can distribute your applications as a JAR file, a Mac OS X Java
application, a Java Web Start application, or an applet. They each have different
benefits as outlined in the following sections.

Distributing Your Application as a JAR File

The most basic distribution method for your Java applications is as a JAR file. It is
the simplest way for you as a developer since it requires very little, if any, changes
from the JAR files you distribute on other platforms. It does though, have
drawbacks for the end user. The major drawback being that Swing applications look
out of place with their odd application names in the menu bar and generic Java
icons in the dock. Considering this alone, deploying your application from a JAR
file is not recommended on Mac OS X if your application has a graphical interface
and will be run by general users.

If you do choose to deploy your application from a JAR file on Mac OS X, it is
important to remember to include in your JAR file a valid manifest file that declares
the class that contains the main method. Without one, users will have to resort to
launching your application from the command line. This will seem very outdated
for users whose platform has let them launch an application simply by
double-clicking it for almost twenty years!

If you do not have the class with main declared in your JAR file a simple way to fix
this is as follows:

28 Mac OS X Java Applications
 Apple Computer, Inc. September 2002

C H A P T E R 3

Deployment Options

1. Unarchive your JAR file into a working directory with some variant of jar xvf
myjar.jar

2. In the META-INF directory is a MANIFEST.MF file. Copy that file and add a line that
begins with Main-Class: followed by the name of your main class, for example,
Main-Class: HelloWorld.

3. Archive you files again but this time use the -m option to jar and designate the
relative path to the manifest file you just modified, for example, jar cmf
YourModifiedManifestFile.txt YourJARFile.jar *.class

This is a very basic example that does not take into account more advanced uses of
the jar program. More detailed information on adding a manifest to a JAR file can
be found in the jar(1) man page. From Project Builder, choose “Open man page”
from the Help menu. (In Terminal, type man jar .)

Mac OS X Java Applications

Native Mac OS X applications include more than just the executable code. They also
include images, sounds, icons, localizable strings, and other resources that the
application may use. They might even include executables for different versions of
the operating system. The applications that are visible in the Finder are actually
directories that hold the executable code and the relevant resources. This directory
structure is hidden from view in the Finder by the .app suffix and a specific bit that
is set for that directory. Such a directory is often referred to as a Mac OS X
application bundle. More information on Mac OS X application bundles is available
in Inside Mac OS X: System Overview. Since the J2SE platform includes ways to deal
with many of these other things, you might not need the full functionality of a Mac
OS X application. There are, however, some things that you gain by wrapping your
pure Java JAR file into an application bundle, and it is very simple to do.

Overall, it provides a better user experience for your users, helping your application
to integrate more closely with native Mac OS X applications. Specific benefits
include these:

� Users can simply double-click the application to launch it.

� If you add an appropriate icon, it shows the application icon in the Dock, clearly
identifying your application. Otherwise, a default Java icon appears in the Dock.

C H A P T E R 3

Deployment Options

Mac OS X Java Applications 29
 Apple Computer, Inc. September 2002

� It lets you set specific system properties that can make your Java application
hard to distinguish from a native application.

� You can bind specific document types to your application. This will allow users
to launch your application by double clicking a document associated with it.

MRJAppBuilder, discussed in more detail in “MRJAppBuilder” (page 45) and
“MRJAppBuilder Tutorial” (page 95), helps you easily bundle your existing Java
application as a Mac OS X Java application.

Application Bundles
What users see as an application in Mac OS X is actually a bundle of resources to a
developer. To get a glimpse inside an application on Mac OS X, you can either
explore the directory of resources from the Terminal or from the Finder. Although
by default the Finder displays applications as a single object, you can view the true
makeup of any application in the Finder. To see what is contained inside a standard
application bundle, Control-click any application and choose Show Package
Contents as in Figure 3-1.

Figure 3-1 Show application bundle contents

You should see something like Figure 3-2.

30 Mac OS X Java Applications
 Apple Computer, Inc. September 2002

C H A P T E R 3

Deployment Options

Figure 3-2 Contents of a Java application bundle

Notice some important details:

� Mac OS X expects to see an Info.plist file in the Contents folder. In the case of
a Java application, this contains some important information that Mac OS X uses
to set up the Java runtime environment for your application. More information
about these property lists is in “Property List Attributes for Java Applications”
(page 31)

� If you have an icon that should be displayed in the Mac OS X Finder, put it in
the Resources folder. There is a Mac OS X–specific file type designated by the
.icns suffix, but most common image types work. To make an icon (.icns) file
from your images, use the Icon Composer application installed in /Developer/
Applications with the Mac OS X Developer Tools.

� Your Java code, in either JAR or .class files is put into Resources/Java. This is
launched by a native executable file in the MacOS folder.

 There are other files in the application bundle, but the specific ones mentioned are
the ones you probably care most about as a Java developer. You can learn more
about the other files an application bundle in Inside Mac OS X: System Overview.

C H A P T E R 3

Deployment Options

Mac OS X Java Applications 31
 Apple Computer, Inc. September 2002

Property List Attributes for Java Applications
Mac OS X makes extensive use of XML files for various system settings. These are
called property lists and have a .plist extension. The Info.plist file in the Contents
folder of a Mac OS X application is one such property list. If you build your Java
application in Project Builder or MRJAppBuilder, this file is automatically
generated for you. Even if it is built for you, there may be times when you may want
to modify it. Since it is a simple XML file, you can modify it with any text editor. Its
settings will be read the next time you launch your application from the Finder. An
example property list for a Java application is shown in Listing 3-1.

Listing 3-1 Info.plist file for simple Java application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleExecutable</key>
<string>SampleApp</string>
<key>CFBundleIconFile</key>
<string>SampleApp.icns</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleVersion</key>
<string>0.1</string>
<key>Java</key>
<dict>

<key>ClassPath</key>
<string>$JAVAROOT/SampleApp.jar</string>
<key>MainClass</key>
<string>SampleApp</string>
<key>Properties</key>
<dict>

32 Mac OS X Java Applications
 Apple Computer, Inc. September 2002

C H A P T E R 3

Deployment Options

<key>com.apple.macos.useScreenMenuBar</key>
<string>true</string>
<key>com.apple.mrj.application.apple.menu.about.name</key>
<string>SampleApp</string>

</dict>
</dict>

</dict>
</plist>

The property list is divided into hierarchical dictionaries. The top-level dictionary
contains the information that the operating system needs to properly launch the
application. The keys in this section are prefixed by CFBundle and are usually self
explanatory. Where they are not, see the documentation in Mac OS X Developer
Release Notes: Information Property List and Inside Mac OS X: System Overview.

At the end of the CFBundle keys, a Java key designates the beginning of a Java
dictionary. The two top-level keys in the Java dictionary are required in the
property list of a Java application bundle. They are defined as follows:

� MainClass, corresponds to the com.apple.mrj.application.main system
property. The string value for this key should specify the fully qualified class
name for the class containing you application’s main method.

� ClassPath, corresponds to the com.apple.mrj.application.classpath system
property. The string value for this key should specify the fully qualified path to
the directories where your class files are or to your JAR files.

Aside from those two required keys, there are some optional keys that you can add
here. They are described in “Mac OS X Application Properties” (page 107).

The Properties sub dictionary of the Java dictionary contains keys that you pass to
your Java applications from the command line with the -D option. For example, if
you want to run this same application from the command line, you pass in the two
keys, com.apple.macos.usescreenmenubar and
com.apple.mrj.application.apple.menu.about.name as follows:

java -Dcom.apple.macos.useScreenMenuBar=true
-Dcom.apple.mrj.application.apple.menu.about.name=SampleApp SampleApp

The keys in the Properties dictionary include both Mac OS X–specific options as
well as general Java options. Mac OS X–specific keys and values that you may add
to this dictionary of the property list are specified in “Mac OS X Application
Properties” (page 107).

C H A P T E R 3

Deployment Options

Mac OS X Java Applications 33
 Apple Computer, Inc. September 2002

If you examine an application built with MRJAppBuilder, you might notice that
some of the keys seem to be missing from the Properties dictionary.
MRJAppBuilder uses a legacy style non-XML property list named
MRJApp.properties in the Contents/Resources folder of an application bundle. This
property list contains the same flags and system properties that you would
normally find in Properties sub-dictionary (of the Java dictionary) in an Info.plist.
In general, this list behaves like the Info.plist with a few exceptions:

� Arguments to main() may not contain embedded spaces. You can work around
this by passing in such arguments to the Info.plist, though.

� The APP_PACKAGE property is not expanded when used in
com.apple.mrj.application parameters.

� Additional command-line arguments designated in MRJApp.properties are
ignored if the application is launched from the command line.

Setting the Java Runtime Properties for an
Application Bundle
Having seen the structure of the Mac OS X information property list should help
you to debug your application and modify existing applications, but how do you
generate that list in the first place? You could build application bundles by hand in
the Terminal, write the Info.plist file yourself in a text editor, and designate the
file as an application with the SetFile command-line tool. There are two much
simpler solutions: Project Builder and MRJAppBuilder.

If you build a Java AWT or Swing application from one of Project Builder’s
templates, Project Builder automatically generates a default Info.plist file. You
may either modify this by hand or directly from Project Builder as outlined in
“Modifying the Application Parameters” (page 88). If you want to turn your
preexisting Java application into a Mac OS X Java Application, MRJAppBuilder is
the tool for you. It allows you to take existing .class or JAR files and wrap the
information around them that Mac OS X expects to find when launching a native
application, including setting up the runtime properties of your Java application. A
simple tutorial for MRJAppBuilder is available in “MRJAppBuilder Tutorial”
(page 95). “Project Builder Tutorial” (page 79) provides a tutorial on using Project
Builder to build a Mac OS X native application.

34 Java Web Start
 Apple Computer, Inc. September 2002

C H A P T E R 3

Deployment Options

Setting Runtime Properties in Project Builder

When you begin a new Java Swing or Java AWT application project in Project
Builder, the ClassPath and MainClass properties are generated automatically. The
ClassPath property is updated as you add and remove .class and .jar files. If you
change the name of your main class or want to append values for any of the other
properties available in “Mac OS X Java System Properties” (page 105), you may do
so by editing the target settings. Choose Edit Active Target from the Project menu.
In the resulting window (or pane depending your settings) you can modify the
settings in a more user-friendly manner than by editing the property list by hand.
Some of the most common properties are set with a checkbox. Other properties are
set in the Additional Properties and Additional VM Options fields.

Setting Runtime Properties in MRJAppBuilder

The Java Properties pane of MRJAppBuilder allows you to set Java runtime
properties. The main and classpath fields are not editable. These values are derived
from your settings in the Application pane. A default set of properties is already
provided but it is simple to add more:

1. Click the Add button.

2. In the property field, put the name of the system property as specified in “Mac
OS X Java System Properties” (page 105).

3. Fill in the appropriate value for that property.

4. The Description field can be left blank; its information will not be saved.

When you build your application, you will see the specified settings in the
Info.plist and MRJApp.properties files.

Java Web Start

Java Web Start provides yet another way you can distribute your Java applications
on Mac OS X. Although not a standard part of Java 1.3.1, Mac OS X does provide
Java Web Start with the default installation of the operating system. This is an
implementation of the Java Network Launching Protocol & API (JNLP)
Specification, v1.0.1. This means that if you choose to build JNLP-aware

C H A P T E R 3

Deployment Options

Java Web Start 35
 Apple Computer, Inc. September 2002

applications, Mac OS X users do not need to do anything to take advantage of them.
They have access to your applications through the Web browser and the Java Web
Start application (installed in /Applications/Utilities/Java).

By default, if a user launches a Java Web Start application more than twice from the
same URL, they are prompted to save the application as a standard Mac OS X
application, as shown in Figure 3-3. They are also prompted on where they want to
save your application. The application is still a Java Web Start application, with all
the benefits that offer, but it now easier for users to run your application since they
do not have to launch a Web browser or the Java Web Start application.

Figure 3-3 Java Web Start integration

The desktop integration setting can be changed in the Preferences of the Java Web
Start application.

There are only a few details to be aware of in how the Mac OS X implementation of
Java Web Start differs from the Windows and Solaris versions:

� It does not support downloading of additional Java Runtime Environments
(JREs). Mac OS X includes J2SE 1.3.1, so if your application specifically requires
JRE 1.2 or 1.4, it will not work. Specifications for versions numbers that can
expand to include 1.3.1 will work though, for example 1.2+ or 1.3+.

� It is s not necessary to set up proxy information explicitly in the Web Start
application. Java Web Start in Mac OS X automatically picks up your proxy
settings from the Network preference pane.

� Java Web Start caches its data in the user’s /Library/Caches/Java Web Start
directory.

36 Applets
 Apple Computer, Inc. September 2002

C H A P T E R 3

Deployment Options

Applets

Applets have always been one of the most common deployment methods for Java.
Mac OS X provides a robust environment for applet development through the use
of Sun’s Java Plug-in. Applets use the same 1.3.1 VM that Java applications use.
Their behavior should be similar to the behavior of Sun’s Java Plug-in. Of course as
with all applet deployment, the host platform’s support for Java is only part of the
story. How Web browsers interpret your HTML code to launch the applet is also
key. This section gives you some relevant information for deploying your applets in
Mac OS X.

Accessing Mac OS X–Specific Properties From
Applets
Mac OS X includes some specific system properties that you might want to take
advantage of in your applets. Except for the com.apple.macos.useScreenMenuBar,
unsigned applets cannot access these properties. If you want to use any of the
properties discussed in “Mac OS X Java System Properties” (page 105), you can
grant permission to access them by adding a line to your system-wide java.policy
file located at /Library/Java/Home/lib/security/.

The line should be of the form:

java.util.PropertyPermission systemPropertyName, read;

Java Applet Plug-in
In previous versions of Mac OS X, applications that displayed applets, such as Web
browsers, used the Mac OS X Java Embedding framework to embed the Java applets
in the native application. This framework uses Sun’s reference appletviewer class
not Sun’s Java Plug-in architecture. When this framework is used to display an
applet, users miss out on the additional features of Sun’s Java Plug-in. Additionally
applet behavior is dependent on how the browser maker uses the Java Embedding
framework.

C H A P T E R 3

Deployment Options

Applets 37
 Apple Computer, Inc. September 2002

In Mac OS X version 10.2, browser developers may easily display applets with the
Java Applet Plug-in architecture (Java Applet.plugin) without writing
browser–specific code to use the Java Embedding framework. Mac OS X’s Java
Applet Plug-in takes full advantage of Sun’s Java Plug-in. What this means to you
is that if you want to deploy your Java applets on Mac OS X is that you should
modify your HTML code so that your applets are be run through the new Java
Applet Plug-in architecture and not the Java Embedding framework.

Taking Advantage of the Java Applet Plug-in with HTML

Although Sun encourages the use of the <APPLET> tag for all applets, this does not
always give you the recommended behavior. For example, in some browsers,
<APPLET> does not give you the full functionality of Sun’s Java Plug-in, while the
<OBJECT> tag, which is mapped to the mime type application/x-java-applet, does.
This is illustrated in Figure 3-4.

Figure 3-4 Effect of HTML tags in Mac OS X 10.2

Figure 3-4 shows the effect of the <APPLET> tag in comparison to the <EMBED> tag. You
can see that the suggested <APPLET> tag has the desired results only in Mozilla/
Netscape. To work around the different interpretations of the <APPLET> tag, you
have a few options. You can just use the tag listed in Listing 3-1 that invokes the Java

Java Embedding framework
Restricted access to plug-in

Java Plug-in

Java 1.3.1 VM

<APPLET> in IE and Opera

<OBJECT> in Opera
<EMBED> in Netscape/Mozilla
<APPLET> in Netscape/Mozilla

Your applet

Java Applet.plugin
Full access to plug-in

38 Applets
 Apple Computer, Inc. September 2002

C H A P T E R 3

Deployment Options

Plug-in or you can use Sun’s HTML converter to get HTML that works in any
browser. The converter is available at http://java.sun.com/products/plugin/1.3/
docs/htmlconv.html. Without changing anything, you should see the same applet
behavior that you saw in previous versions of Mac OS X.

Benefits of Using the Java Applet Plug-in

Using the Java Applet Plug-in provides a better experience for people that use your
applets. Changes have been made in the areas discussed below.

JAR Caching

You can now designate that you want to store certain JAR files for repeated use. If
you developed for Mac OS 9, notice that this is similar to JAR caching on MRJ 2.2.x.
The cache is stored in the users home folder in Library/Caches/Java. To take
advantage of JAR file caching, you may need to modify your HTML with the
following tags:

<PARAM NAME = "cache_option" VALUE="plugin">

Turns on caching.

Table 3-1 Interpretation of HTML tags in common Mac OS X browsers

Browser <APPLET> <OBJECT> <EMBED>

Internet Explorer 5.2.x
(default browser in
Mac OS X 10.2)

Java Embedding framework

Netscape/Mozilla Treated as an <EMBED> tag,
which by default maps to
the application/
x-java-applet mime type.

Java Plug-in

OmniWeb Java Plug-in

Opera Java Plug-in

Chimera Treated as an <EMBED> tag. Java Plug-in

http://java.sun.com/products/plugin/1.3/docs/htmlconv.html
http://java.sun.com/products/plugin/1.3/docs/htmlconv.html

C H A P T E R 3

Deployment Options

Applets 39
 Apple Computer, Inc. September 2002

 <PARAM NAME = "cache_archive" VALUE="a.jar, b.jar, c.jar ">
This is an optional tag used to specify the list of JAR files you want to
cache.
JAR files in cache_archive are searched first, then the JAR files
designated with the ARCHIVE tag are used

 <PARAM NAME = "cache_version" VALUE="1.2.0.1, 2.1.1.2, 1.1.2.7">
This is an optional tag used to specify the version number of the JAR
files designated with cache_archive. Each value corresponds to the
respective JAR files designated with cache_archive. If the version value
is newer than what is cached, the JAR file in the cache is updated. If this
tag is omitted, the plug-in checks the server to see if there is a newer
version available and caches that version.

JAR file caching in Mac OS X conforms to the Java 1.3.1_03 standard. It does not
conform to the Java 1.4 standard. This means that there are certain things you
should keep in mind:

� JAR files specified with the ARCHIVE tag are not cached.

� The cache_version_ex parameter is not supported.

� There is no JAR file indexing support.

� For better forward compatibility, it is suggested that you use the cache_archive
and cache_version parameters.

Signed JAR Files

If a user decides to always trust your JAR file, a certificate is stored in the user’s
home folder in Library/Preferences/Java Plugin certificates 1.3.1.

Users can view their JAR file certificates in the Java Plugin Settings application.

The Java Console

The Java Console provides a way to log and trace the behavior of your applet while
it is running. It can give you interactive thread information and allow you to force
garbage collection. The Java Console is the display medium for System.out
System.err for applets. The Java Console is visible if you select the option Show Java
Console in the Java Plugin Settings utility.

40 Applets
 Apple Computer, Inc. September 2002

C H A P T E R 3

Deployment Options

Java Plugin Settings Application

The Java Plugin Settings application allows users to fine-tune how applets behave
in Mac OS X. It behaves on Mac OS X as it does on other platforms. It important to
recognize that settings you make while testing may not be the settings that users
have on their computers. These settings are stored per user in ~/Library/
Preferences/com.apple.java.plugin.properties131.

Java Development Tools 41
 Apple Computer, Inc. September 2002

C H A P T E R 4

4 The Development Environment

Mac OS X provides a very robust environment for Java development. This chapter
outlines some of the tools available to you in Mac OS X. It also discusses some things
that may be different in the development environment from other platforms that
you may have used for Java development.

Java Development Tools

There are three basic types of Java development tools available to you in Mac OS X:

� There are the standard command-line Java tools that you normally associate
with the Java Development Kit (JDK).

� Apple provides additional command-line and GUI-based tools free with the
Mac OS X Developer Tools.

� There are many third-party tools, both open source and commercial, that you
can use for Java development on Mac OS X.

Standard JDK Tools
Most of the same tools that you would expect to find on Linux, Solaris, or Windows
with the Java Development Kit (JDK) installed are included with Mac OS X by
default. There are no extra installation steps required. Most of the standard JDK
tools are command-line tools. The Java command-line tools are accessible from /
usr/bin and /Library/Java/Home/bin. These tools are included with the default
installation of Mac OS X:

42 Java Development Tools
 Apple Computer, Inc. September 2002

C H A P T E R 4

The Development Environment

� basic Java tools

� java— runtime and virtual machine

� javac—compiler

� javah—C header and stub file generator

� javap—class file disassembler

� jdb—debugger

� jar—archive tool

� javadoc—API documentation generator

� appletviewer—applet viewer

� extcheck—JAR conflict detection utility

� Remote Method Invocation (RMI) tools

� rmic—RMI stub compiler

� rmid—RMI activation system daemon

� rmiregistry—remote object registry

� serialver—tool to obtain class serial version

� internationalization tool

� native2acsii—text converter to Unicode

� security tools

� jarsigner—JAR signing and verification tool

� keytool—key and certificate management tool

� policytool—tool to manage Java policy files

� Java Interface Definition Language (IDL) and RMI over Internet Inter-ORB
Protocol (IIOP) tools

� idlj—IDL-to-Java compiler

� tnameserv—Java IDL name server starter script

Documentation on using these tools is available in the online manual (man) pages.
These are available in Project Builder under the Help menu as well as in the shell
itself.

C H A P T E R 4

The Development Environment

Java Development Tools 43
 Apple Computer, Inc. September 2002

Displaying a Java Stack Trace

When debugging your Java applications, you may want to display a stack trace. If
you launched your application from the command line, CTRL-\ generates a SIGQUIT
signal and prints the current stack trace in your Terminal window. If you launch
your Java application from the Finder, you just need to find its process ID (PID) and
deliver a SIGQUIT signal to that process. You see the stack trace in the Console
application. For example, first launch Applet Launcher, Terminal, and Console (all
are in Applications/Utilities). If you want to generate a stack trace for Applet
Launcher, in Terminal type:

ps -auxwww | grep "Applet Launcher"

You would see the results as something like:

bgerfen 1490 0.0 2.3 255700 17912 ?? S 2:39PM 0:05.76 /Applications/
Utilities/Java/Applet Launcher.app/Contents/MacOS/Applet Launcher
-psn_0_5898241
bgerfen 1507 0.0 0.0 1116 4 std R+ 2:41PM 0:00.00 grep -i
Applet Launcher

Once you have the appropriate PID, kill it. For this example this looks like:

kill -QUIT 1490

Console displays the stack trace.

You may also want to include monitor status information in the stack trace. If you
are running your application from the command line, just run your program with
the -XX:+JavaMonitorsInStackTrace flag. You can also make a .hotspotrc file in your
home directory with this line in it:

+JavaMonitorsInStackTrace

Since this file is parsed every time a Java VM starts up, it is in effect for applications
run from the command line, double-clickable applications run from the Finder, and
even Java applications embedded within other applications.

Note: If you deliver a signal to a process that is running in gdb, gdb breaks on the
signal. You can just continue on (with the c command) since you are actually not
interested in the signal itself, but in the output the signal handler gives you.

44 Java Development Tools
 Apple Computer, Inc. September 2002

C H A P T E R 4

The Development Environment

If you have a reproducible crash, you might also want to find the stack trace for the
native code by running your application in gdb. After a crash use this command:

thread apply all bt

Other Command-Line Tools
Having a UNIX-based core at the heart of the operating system provides you, as a
Java developer, access not only to Java tools, but also a host of general UNIX-based
development tools.

A look in /usr/bin shows many tools that make Java development on Mac OS X
very comfortable if you are already accustomed to a UNIX-based operating system.
(In the Finder, choose “Go to Folder” from the Go menu.) You will find emacs, gdb,
make, pico, vi, and perl among others. If you do not see all of these, you may need
to install the Mac OS X Developer Tools. See “Where to Get the Tools” (page 49) for
more information.

If you are looking for Mac OS X ports of other command-line tools, look first in the
Darwin CVS repository available at http://opensource.apple.com/darwin or
http://www.opendarwin.org. You can also look at the main repository of the tool
you are trying to obtain. For basic information on porting your favorite non-Java
tools to Mac OS X, see Inside Mac OS X: UNIX Porting Guide.

GUI-Based Tools
Among the GUI-based tools are three that are especially important for Java
development: Project Builder, MRJAppBuilder, and Applet Launcher.

Project Builder

Project Builder is a complete integrated developmente environment (IDE) that
allows you to edit, compile, debug, and package your Java applications. A tutorial
of how to build a simple Java application is included in “Project Builder Tutorial”
(page 79). Additional details of using Project Builder to build Java applications are
included in the section on compiling Java files in Project Builder Help.

http://opensource.apple.com/darwin
http://www.opendarwin.org

C H A P T E R 4

The Development Environment

Java Development Tools 45
 Apple Computer, Inc. September 2002

MRJAppBuilder

MRJAppBuilder is a utility for packaging already-compiled Java applications to run
as Mac OS X applications. MRJAppBuilder constructs applications in the same
application bundle format as other Mac OS X applications. It is very simple to use
and allows you, with minimal work, to make your Java application launch like
native Mac OS X applications. You can even easily set options like the Dock icon and
the application name that appears in the menu bar without modifying your Java
source code. Additionally you can use MRJAppBuilder to set runtime flags that you
might want to use only in Mac OS X. In order to use MRJAppBuilder, you need only
know the main class name of your application and have access to the .class files.

The interface to MRJAppBuilder is simple and readily apparent when you open the
application. As illustrated in Figure 4-1, there are four tabbed panes in the
MRJAppBuilder window.

46 Java Development Tools
 Apple Computer, Inc. September 2002

C H A P T E R 4

The Development Environment

Figure 4-1 MRJAppBuilder

The information in the Application pane is all that you need to make a Mac OS X
application. All three fields are required. The “Main classname” field is where you
enter the name of the class that contains main. This field represents the value of the
property com.apple.mrj.application.main. Remember to include a full package
name. For example, com.myCompany.myMainClass.

The Classpath field allows you to modify the classpath. This is automatically set to
point to the JAR file that you’re bundling into your application. If you want to use
JAR or .class files that will not be included in the resulting application bundle, add
a classpath entry of this form:

$APP_PACKAGE/../MyJARFile.jar

C H A P T E R 4

The Development Environment

Java Development Tools 47
 Apple Computer, Inc. September 2002

$APP_PACKAGE is a special path string that represents the application bundle
directory. The last required field is the “Output file” field. This is where the
resulting application bundle will be built. An optional setting in this pane is the
application icon. Click the icon in the “Output file” section to bring up a file chooser
dialog for selecting an .icns file.

Settings in Mac OS X, Java Properties, and Merge Files panes are optional. The Mac
OS X pane allows you to set values specific to the Mac OS X application bundle
format. If you do not specify CFBundleExecutable or CFBundleName, they are set based
on the name of the output file you choose.

The Java Properties pane lets you set specific runtime properties, which can include
standard Java properties as well as the specific Mac OS X system properties
discussed in “Mac OS X Application Properties” (page 107). See “Setting Runtime
Properties in MRJAppBuilder” (page 34) for more information on the Java
Properties pane.

The Merge Files pane provides a means for adding files to the application bundle,
such as .zip or JAR files. Each item added to the merge list is copied into the
application’s Contents/Resources/Java directory. Each item you add to the merge
list gets automatically added to the classpath.

When you have finished making settings, click Build Application. MRJAppBuilder
does not provide an import mechanism. If you build an application and want to
change certain settings, you need to make a new application with MRJAppBuilder
or modify the Info.plist and MRJApp.properties files by hand. Information on these
files can be found in “Application Bundles” (page 29).

Applet Launcher

Applet Launcher (in /Applications/Utilities/Java) allows you to run applets
without the overhead of launching a Web browser. It provides a graphical interface
to Sun’s Java Plug-in. If you want to test the performance of your applet with the
sun.applet.AppletViewer class, you should use the appletviewer command-line tool
(/usr/bin/). You can enter the path to an applet using its fully-qualified URL, and
then press the Launch button. For example, entering the following URL launches
the ArcTest applet:

file://localhost/Developer/Examples/Java/Applets/ArcTest/example1.html

Performance and behavior settings for applets may be adjusted in the Java Plugin
Settings application installed in /Applications/Utilities/Java.

file://localhost/Developer/Examples/Java/Applets/ArcTest/example1.html

48 Java Development Tools
 Apple Computer, Inc. September 2002

C H A P T E R 4

The Development Environment

Other Tools

The Mac OS X Developer Tools also provide many tools useful for any kind of
development, not just Java. For example Package Maker, File Merge, and Icon
Composer are just a few examples. Figure 4-2 (page 48) shows all of the tools that
get installed into /Developer/Applications.

Figure 4-2 Tools in /Developer/Applications

In addition to the Apple-supplied tools, since you have both a UNIX foundation
and a full implementation of Java 2 Standard Edition, you may use many third party
tools in Mac OS X. IDEs like Borland’s JBuilder, Sun’s ONE Studio, and
Metrowerks’ CodeWarrior are all available. There are many text editors, as well as
other tools for specific functionality like ant, JUnit, and OptimizeIt. If you are
interested in Java 2 Platform, Enterprise Edition (J2EE) development, Pramati and
Jboss both offer J2EE development environments for Mac OS X. Some of the most
important pieces of J2EE, like Enterprise Java Beans and Java Server Pages (JSP), are

C H A P T E R 4

The Development Environment

Java Development Tools 49
 Apple Computer, Inc. September 2002

supported in Apple’s WebObjects product (http://www.apple.com/webobjects).
Zentek’s iJADE product line is one solution for Java 2 Platform, Micro Edition
(J2ME) development in Mac OS X.

Where to Get the Tools
The standard JDK tools are installed with a default user installation of Mac OS X. If
your computer has Mac OS X installed but does not appear to have tools like javac,
you can remedy this by making sure that the BSD packages are installed:

1. In the Welcome to Mac OS X folder of the Mac OS X Install Disk 1, double-click
the Install Mac OS X icon.

2. In the window that opens, click the Restart button.

3. When your computer has restarted, follow the onscreen prompts until you get
to the Installation Type phase. (This is indicated on the left side of the Install Mac
OS X window.)

4. Select the Customize button.

5. Select BSD Subsytem.Though you may select other packages to add to your
computer, for basic command-line Java development, you do not need any other
packages. (The Base System and Essential System Software packages are always
included.)

6. Proceed with the installation by following the onscreen prompts. Once you have
restarted your computer, you should find the command-line Java tools installed
in /usr/bin.

The Mac OS X Developer Tools CD comes with Mac OS X and is provided with new
Macintosh computers. If you do not have a current copy of the Mac OS X Developer
Tools, you may download them from the Apple Developer Connection Web site at
http://connect.apple.com. Even if you do not want to use the Apple provided
GUI-based tools, you should install the Mac OS X Developer Tools since they
contains some important tools not installed by default.

Note: The Developer Tools available through the Apple Developer Connection
online may be a more recent version than the Developer Tools CD that came with
your copy of Mac OS X. It is advisable to check the website first. Compatibility
information between releases is discussed in the release notes which are available
online at http://developer.apple.com/techpubs/macosx/ReleaseNotes.

http://connect.apple.com
http://www.apple.com/webobjects
http://developer.apple.com/techpubs/macosx/ReleaseNotes

50 Java Development Tools
 Apple Computer, Inc. September 2002

C H A P T E R 4

The Development Environment

The Aqua Look and Feel 51
 Apple Computer, Inc. September 2002

C H A P T E R 5

5 Cross-Platform Practices for
Great Native Behavior

If you are developing Java applications that you plan to deploy on multiple
platforms, there are some things that you should keep in mind to support Mac OS
X as well as the other platforms. This chapter discusses some basic points to
consider and small changes you can make to your Java code to help it run well on
any platform, but are especially important to consider to make your application
look like a Mac OS X application. In general, these changes do not require you to use
any APIs or properties specific to Mac OS X. This chapter mainly discusses user
interface issues.

The Aqua Look and Feel

Before discussing cross-platform coding practices, it is important to lay the
foundation of what is available in Mac OS X. The default interface to the operating
system is called Aqua. Although other interfaces can be displayed in Mac OS X,
there is great benefit in usability by adhering closely to the native interface. To that
end, Apple has worked hard to make your Java applications appear and behave as
much like native applications as possible. Taking advantage of the basic look of the
Aqua user interface is very simple. It requires you to do nothing other than write
clean Java code. In Mac OS X, the default pluggable look and feel (PLAF) for Swing
applications, com.apple.mrj.swing.MacLookAndFeel, gives an Aqua appearance to
your Swing applications. So if you don’t explicitly change your code to invoke
another look and feel, Swing applications look like native applications by default.

In general it is good practice to avoid explicitly setting the PLAF in your Java
code.This makes your application fit in much better on any platform. In the case of
Mac OS X, this is especially true. If do you need to change the look and feel of your

52 Placing and Painting Components
 Apple Computer, Inc. September 2002

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

application to test it for different platforms, it is better to set the swing.defaultlaf
Java property for your application at runtime by passing in
-Dswing.defaultlaf=yourLookAndFeel when launching the application. For
development purposes, you may want to temporarily change Mac OS X’s default
look and feel. You can do this by modifying the swing.properties file in /Library/
Java/Home/lib.

You don’t need to use AWT components for the native look of Aqua because Swing
provides it. You can enjoy further benefits in performance and predictable graphics
behavior by not mixing the heavyweight and lightweight components of AWT and
Aqua.

Behavior is part of a user interface as well as appearance. Automatic adoption of the
Aqua appearance is a first step, but there are many details that still are in your
hands when trying to provide the best Aqua experience. Inside Mac OS X: Aqua
Human Interface Guidelines is the definitive guide for how applications should
appear and behave in Mac OS X and why they should behave that way. If you have
a decision to make that is not specified anywhere else, that document is a great
source of answers to user interface questions. If you find areas where your pure Java
applications do not take advantage of these guidelines, please let Apple know.

There are numerous details that go into designing a first-class application on any
platform. Although it may be impossible to build a perfect application, there are a
few topics that are hot issues to users of a particular platform. As a Java developer,
a few areas to keep in mind as you design are discussed in the following sections.

Placing and Painting Components

The complicated nestings and interrelations of containers and components in Swing
interfaces can sometimes make it difficult to remember that the development
platform is not always the deployment platform. The different look and feel designs
available can provide widely variable appearances and behaviors. This section
brings to the foreground some details that while helping your application to work
well on any platform, are especially important in Mac OS X.

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

Placing and Painting Components 53
 Apple Computer, Inc. September 2002

Layout Managers
Explicitly setting the x and y coordinates is dangerous when you consider the
multiple platforms and look and feel designs that the application may run under.
The results of a “well-designed” application in one environment may be disastrous
in another, with components painting on top of each other and running off the edge
of a container, among other things. It is generally unsafe to assume that placing
buttons and controls at explicit coordinates is portable. Use the AWT layout
managers to solve this problem. The layout managers use abstracted location
constants and determine the exact placement of these controls for a specific
environment. Layout managers take into account the sizes of each individual
component while maintaining their placement relative to one another within the
container.

Sizing Components
In general, do not set component sizes explicitly. Each look and feel has font styles
and sizes. These font sizes will affect the required size of the component containing
the text. Moving explicitly sized components to a new look and feel with a larger
font size can cause problems. The safest means of keeping your components a
proper, minimal size in a portable manner is to simply use
yourComponent.setSize(yourComponent.getPreferredSize()).

Most layout managers and containers respect a components preferred size, usually
making this call unnecessary. As your interface becomes more complicated
however, you may find this call handy for containers with many child components.

Coloring Components
Because a given look and feel tends to have universal coloring and styling for most,
if not all of its controls, developers may be tempted to create custom components
that match the look and feel of standard user interface classes. This is perfectly legal,
but adds maintenance and portability costs. It is easy to set an explicit color that you
think works well with the current look and feel. Changing to a different look and
feel though may surprise you with an occasional non-standard component. To
ensure that your custom control matches standard components, query the
UIManager class for the desired colors. An example of this is a custom Window object
that contains some standard lightweight components but wants to paint its
uncovered background to match that of the rest of the applications containers and
windows. To do this, you can call

54 Windows and Dialogs
 Apple Computer, Inc. September 2002

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

myPanel.setBackground(UIManager.getColor("window"))

This returns the color appropriate for the current look and feel. The other advantage
of using such standard methods is that they provide more specialized backgrounds
that are not easily reconstructed, such as the striped background used for Aqua
containers and windows.

Windows and Dialogs

Window coordinates and insets are compatible with the JDK. In a nutshell: Window
bounds refer to the outside of the window’s frame; the coordinates of the window
put (0,0) at the top left of the title bar (not at the top left of the content region as in
MRJ on Mac OS 9). The getInsets method returns the amount by which content
needs to be inset in the window to avoid the window border. This should affect only
applications that are doing precision positioning of windows (especially full-screen
windows), or those that bypass layout managers to do their own hard-coded
component positioning.

Windows behave differently in Mac OS X than they do on other platforms. For
example an application can be open without having any windows. Windows
minimize to the Dock, and windows with variable content always have scroll bars.
This section highlights the windows details you should be aware of and discusses
how to deal with window behavior in Mac OS X.

Use of the Multiple Document Interface
The multiple document interface (MDI) model of the javax.swing.JDesktopPane
class can provide a confusing user experience in Mac OS X. Windows minimized in
a JDesktopPane move around as the JDesktopPane changes size. In the
JDesktopPane, windows minimize to the bottom of the pane while independent
windows minimize to the Dock. Furthermore, JDesktopPane restricts users from
moving windows where they want. They are forced to deal with two different
scopes of windows, those within the JDesktopPane and the JDesktopPane itself.
Normally Mac OS X users interact with applications through numerous
free-floating, independent windows and a single menu bar at the top of the screen.
Users can intersperse these windows with other application windows (from the

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

Windows and Dialogs 55
 Apple Computer, Inc. September 2002

same application or other applications) anywhere they want in their view, which
includes the entire desktop. Users are not constrained visually to one area of the
screen when using a particular application. When building cross-platform
applications with multiple windows, it is generally a good idea to avoid using
javax.swing.JDesktopPanes.

There are times when there is not a simple way to solve window-related problems
other than using a JDesktopPane. For example, you might have a Java application
that requires a floating toolbar-like entity, referred to in Swing as an internal utility
window”, that needs to always remain in the foreground regardless of which
document is active. Although Java currently has no means of providing this other
than by using JDesktopPane, for new development you may want to consider
designing a more platform-neutral user interface with a single dynamic container,
similar to applications like JBuilder or LimeWire. If you are bringing an existing
MDI-based application to the Macintosh from another platform and do not want to
refactor the code, Mac OS X does support the MDI as specified in the J2SE 1.3.1
specification.

Windows With Scroll Bars (Using JScrollPanes)
In Mac OS X, scrollable document windows have a scroll bar regardless of whether
or not there is enough content in the window to require scrolling. The scroller itself
is present only when the size of the content exceeds the viewable area of the
window. This prevents users from perceiving that the viewable area is changing
size. By default, a Swing JFrame has no scroll bars, regardless of how it is resized.
The easiest way to provide scrollable content in a frame is to place your frame’s
components inside a JScrollPane, which can then be added to the parent frame. In
the default behavior of JScrollPane however, scrollbars only appear if they content
in the pane exceeds the size of the window. If you are using a JScrollPane in your
application, you can set the JScrollPane’s scroll bar policy to always display the
scroll bars, even when the content is smaller than the viewable size of the window.
An example is shown in Listing 5-1.

Listing 5-1 Setting JScrollBar policies to be more like Aqua

JScrollPane jsp = new JScrollPane();
jsp.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
jsp.setHorizontalScrollBarPolicy(JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

56 Windows and Dialogs
 Apple Computer, Inc. September 2002

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

With this setting the scroll bars are solid—with scrollers appearing when the
contents are larger than the viewable area. You might want to do this conditionally
based on the host platform since the default policy, AS_NEEDED, may more closely
resemble other platforms native behavior.

File Choosing Dialogs
The java.awt.FileDialog and javax.swing.JFileChooser classes are the two main
mechanisms to create quick and easy access to the file system for Java applications.
Although each has its advantages, java.awt.FileDialog provides considerable
benefit in making your application behave more like a native application. The
difference between the two is especially evident in Mac OS X as Figure 5-1 and
Figure 5-2 show.

Figure 5-1 java.awt.FileDialog

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

Windows and Dialogs 57
 Apple Computer, Inc. September 2002

Figure 5-2 javax.swing.jFileChooser

The column-view style of browsing is adopted automatically by the AWT
FileDialog while the Swing JFileChooser uses a navigation style different from that
of native Mac OS X applications. Unless you need the functional advantages of
JFileChooser you probably want to use java.awt.FileDialog. Since the FileDialog is
modal and draws on top of other visible components, which is not the usual
consequence of mixing Swing and AWT components.

Dealing With Bundles in Mac OS X

As described in “Application Bundles” (page 29), a native Mac OS X application is
packaged as a bundle, which appears in the Finder as a single object but is actually
a directory that contains all the resources of an application. Packages are also
bundles that can be viewed as single objects or as directories. Java applications
using JFileChooser or FileDialog recognize bundles as directories and allow
inappropriate navigation. If you are building an application for developers, you
might want to display the actual, on-disk contents of the directory, but if you are

Note: javax.swing.JFileChooser only supports traversal of Mac OS X file aliases
in the default file view. If you replace it, aliases are not traversable. This limitation
does not affect soft links, only Mac OS X aliases.

58 Windows and Dialogs
 Apple Computer, Inc. September 2002

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

building an application for an end user, you do not want to display the bundle
contents. Apple provides properties for both dialog classes that allow you the
option of controlling how application and package bundles are displayed.

java.awt.FileDialog can be set to display application and package bundles as non
navigable using the com.apple.macos.use-file-dialog-packages runtime system
property. For example, to turn off navigation, run your application as follows:

java -Dcom.apple.macos.use-file-dialog-packages=true yourApplication

The resulting file dialog resembles Figure 5-3. Notice that you cannot navigate into
the application bundle.

Figure 5-3 Application displayed as an atomic object

The default setting of com.apple.macos.use-file-dialog-packages, false, leaves the
contents of application and package bundles navigable by users as seen in Figure
5-4.

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

Windows and Dialogs 59
 Apple Computer, Inc. September 2002

Figure 5-4 Application displayed as a directory

You can set this behavior in your application bundle using the technique described
in “Setting the Java Runtime Properties for an Application Bundle” (page 33). This
allows you to alter your AWT dialogs for Mac OS X without any code change. If
your application requires unique instances to behave differently, you can set the
property to true or false at runtime as necessary using System.setProperty.

The FileDialog.setFile method does not work as expected in Mac OS X, so you can
not specify which directory the dialog opens in.

javax.swing.JFileChooser offers more flexibility than java.awt.FileDialog. If you
are already using it in your code, there are two properties that let you specify
whether or not application and package bundles reveal their contents. Modifying
JFileChooser’s behavior does require you to modify your source code. The
properties JFileChooser.appBundleIsTraversable and
JFileChooser.packageIsTraversable take values of never or always. If you want to
hide the contents of both types of bundles, set JFileChooser.packageIsTraversable
to never. If you want to hide the contents of application bundles but show the
contents of package bundles, set JFileChooser.appBundleIsTraversable to never.
Generally, you should set JFileChooser.packageIsTraversable to never.

60 Menus
 Apple Computer, Inc. September 2002

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

You can set these properties globally for all instances of JFileChooser in your
application with the UIManager.put method. You can set them on a per-instance
basis via the putClientProperty instance method inherited from
javax.swing.JComponent.

Menus

One difficulty in cross-platform Java user interface development is dealing with
menus. The appearance of menu items tends to vary between platforms, as does
how you handle meta keys described in menus. Unfortunately, many Java
programmers write their applications with only the current development platform
in mind and explicitly specify the appropriate modifier or trigger in their code. This
poses problems in porting applications from platform to platform, as well as risking
misinterpretation of what the platform’s appropriate triggers are. Elegant and
portable solutions to creating the appropriate actions on any given platform do exist
and are covered in the following sections.

Menu Shortcuts
Keyboard shortcuts for invoking menu actions are often set with an explicit
javax.swing.KeyStroke specification. This becomes complicated when moving to a
new platform with a different modifier key because new KeyStrokes need to be
conditionally created based on the current client platform. The solution to this
problem is to use java.awt.Tookit.getMenuShortcutKeyMask to ask the system for the
appropriate key rather than defining it yourself.

When calling this method, the current platform’s Toolkit implementation returns
the proper mask for you. This single call checks for the current platform and then
guesses which key is correct. In the case of adding a Copy item to a menu, this
means that you can replace the complication of Listing 5-2 with the simplicity of
Listing 5-3.

Note: These properties have an effect only when using the Swing’s Aqua look
and feel in Mac OS X.

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

Menus 61
 Apple Computer, Inc. September 2002

Listing 5-2 Explicitly setting KeyStrokes based on the host platform

JMenuItem jmi = new JMenuItem("Copy");
 String vers = System.getProperty("os.name").toLowerCase();
 if (s.indexOf("windows") != -1) {
 jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,
Event.CTRL_MASK));
 } else if (s.indexOf("mac") != -1) {
 jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,
Event.META_MASK));
 }

Listing 5-3 Using getMenuShortcutKeyMask to set meta keys

JMenuItem jmi = new JMenuItem("Copy");
jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,
 Toolkit.getDefaultToolkit().getMenuShortcutKeyMask()));

Most common actions in Mac OS X have a keyboard equivalent that uses the
Command key, previously known as the Apple key, as a modifier. There may be
additional modifier keys like Shift, Option, or Control, but the Command key is the
primary key that alerts an application that what follows is a command, not regular
input. Not all platforms provided this consistency in user interface behavior.

Different keys may prompt an application to begin listening for commands. The
code presented in Listing 5-3 provides only one generalized mask, so you still may
need to make conditional settings depending on your intended host platform. The
fact that Mac OS X keyboard equivalents use Command makes your life a bit easier
if you’re bringing your application to Mac OS X. To make sure you are not
overriding any of the keyboard commands Macintosh users have been accustomed
to for over twenty years, see Inside Mac OS X: Aqua Human Interface Guidelines for the
definitive list of the most common and reserved shortcuts.

Some platforms support menu item mnemonics or single-key shortcuts to menus
and their contents using the Alt key. Mnemonics for these shortcuts are highlighted
with a single underlined letter in the menu or item’s name. This is a foreign concept
to Mac OS X users. Although it is supported as a part of Java, the suggested way to
handle the identification of keyboard shortcuts in Mac OS X is by clearly identifying
all of the required keys. For an example, look at the File menu in the Finder. When

62 Menus
 Apple Computer, Inc. September 2002

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

writing your Java applications, it is suggested that you apply Swing mnemonics in
a platform-sensitive manner in your code if possible, such as using a single
setMnemonics() method that is conditionally called when constructing your
interface.

Menu Item Icons
Like mnemonics, menu item icons are also available and functional via Swing in
Mac OS X. They are not a standard part of the Aqua interface, although some
applications do display them—most notably the Finder in the Go menu. You may
want to consider applying these icons conditionally based on platform. Whether or
not you choose to display menu item icons in Mac OS X, you should be aware that
Aqua does specify a specific set of special characters to be used in menus. See the
information on using special characters in menus in Inside Mac OS X: Aqua Human
Interface Guidelines

Contextual Menus
There is no problem supporting contextual menus in your Java applications on Mac
OS X—they are fully supported. There are slight differences in terminology though.
Java calls them popup menus while Aqua calls them contextual menus. More
important is how they are triggered on different platforms. On Mac OS X, they are
triggered by a Control-click. (By default, the second button of a two-button mouse
maps to Control-click in Mac OS X.) In Windows, the right mouse button is the
standard trigger for contextual menus.

These are two very different cases, which could result in fragmented and
conditional code. One important aspect of both triggers is shared, the mouse click.
To ensure that your program is interpreting the proper contextual menu trigger, it
is again a good idea to ask the AWT to do the interpreting for you with
java.awt.event.MouseEvent.isPopupTrigger.

The method is defined in java.awt.event.MouseEvent because you need to activate
the contextual menu through a java.awt.event.MouseListener on a given
component when a mouse event on that component is detected. The important

Note: Since the ALT_MASK modifier evaluates to the Option key on the Mac,
Control-Alt masks set for Windows become Command-Option masks if you use
getMenuShortcutKeyMask in conjunction with ALT_MASK.

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

Event Handling 63
 Apple Computer, Inc. September 2002

thing to determine is how and when to detect the proper event. In Mac OS X, the
pop up trigger is set on MOUSE_PRESSED. In Windows it is set on MOUSE_RELEASED. For
portability, both cases should be considered as shown in Listing 5-4.

Listing 5-4 Using isPopupTrigger to detect contextual menu activation

JLabel label = new JLabel("I have a pop up menu!");

label.addMouseListener(new MouseAdapter(){
 public void mousePressed(MouseEvent e) {
 evaluatePopup(e);
 }

 public void mouseReleased(MouseEvent e) {
 evaluatePopup(e);
 }

 private void evaluatePopup(MouseEvent e) {
 if (e.isPopupTrigger()) {
 // show the pop up menu...
 }
 }
});

Event Handling

Two notes on event handling may be useful to your in your development and
deployment of applications in Mac OS X:

� Many of the Swing and AWT components are implemented with native code
from the Carbon API of Mac OS X. Although this should not affect your Java
code, it might be important information in debugging applications that do not
appear to behave correctly, especially in regard to the runtime handling of
events. If you do find an issue where the event handling is not as specified by
the Java 2 specification, please file a bug as explained in “Filing and Tracking
Bugs” (page 14).

64 Event Handling
 Apple Computer, Inc. September 2002

C H A P T E R 5

Cross-Platform Practices for Great Native Behavior

� Although mouse-down events from additional buttons on multi button USB
mice are delivered correctly, mouse-up and mouse-drag events involving the
additional buttons may not be delivered with the correct modifiers. There may
be ambiguity between various button masks and meta key masks. Use the utility
functions as a workaround (for example,
java.awt.event.InputEvent.isMetaDown) instead of accessing the modifiers
directly.

Modifying the Default Settings for Hardware Graphics Acceleration 65
 Apple Computer, Inc. September 2002

C H A P T E R 6

6 Using Native Features of Mac OS
X in Java Applications

If you are targeting a Java application for Mac OS X deployment, this chapter offers
a collection of things you might need to know to help your application perform the
best it can in Mac OS X.

Modifying the Default Settings for Hardware Graphics
Acceleration

When your Swing applications start up, the Java implementation in Mac OS X
determines which video card is installed in your system and compares this against
a list of known unsupported video cards. If your card does not appear in, or is
commented out of this list, then hardware graphics acceleration is invoked. If you
do nothing at all, your Java applications take advantage of hardware acceleration if
that computer has a compatible video card. You may find in testing your
application in Mac OS X that you do not want hardware acceleration on or you
might find certain video cards that you wish to turn off hardware acceleration for.
If these cards are not ones that Apple automatically turns off hardware acceleration
for, you need to explicitly turn them off with the com.apple.hwaccelexclude
property using the naming conventions described in “Video Cards Designation
Strings” (page 67). For example, to turn off hardware acceleration on just the ATI
Radeon 8500 but leave it on for all other cards, you could use the following
command in Terminal:

java -Dcom.apple.hwaccel=true
-Dcom.apple.hwaccelexclude=ATIRadeon8500_67108864 -jar App.jar

66 Modifying the Default Settings for Hardware Graphics Acceleration
 Apple Computer, Inc. September 2002

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

By using the com.apple.hwaccelexclude property, you have complete control of
which cards are ignored. If you choose to turn off hardware acceleration for any
specific cards, make sure that you also turn it off for those that are uncommented
by default in the hwexcludelist.properties file as well. Otherwise you will turn it
off for the video card you are concerned with, but it will be on with cards that Apple
initially had it turned off for.

Taking this into account, a better example of turning off hardware acceleration for
the ATI Radeon 8500 would also turn it off for the 8 MB ATI Rage 128 card in the
first generation iBooks and Titanium PowerBooks:

java -Dcom.apple.hwaccel=true
-Dcom.apple.hwaccelexclude=ATIRadeon8500_67108864,ATIRage128_8388608 -jar
App.jar

The com.apple.hwaccel=true is not necessary in Mac OS X version 10.2, but it is
suggested that you use it along with the -Dcom.apple.hwaccelexclude flag.

 To turn off hardware acceleration completely, pass in the command-line flag
com.apple.hwaccel=false. For example:

java -Dcom.apple.hwaccel=false -jar App.jar

 To turn on hardware acceleration for all video cards, pass in the command-line flag
com.apple.hwaccelexclude with no arguments as follows:

java -Dcom.apple.hwaccel=true -Dcom.apple.hwaccelexclude= -jar App.jar

You may incorporate any of these command-line options into your Mac OS X
applications bundles using MRJAppBuilder or Project Builder.

Advanced Options
While testing your Java applications, you may want to see what effect Mac OS X’s
Java hardware graphics acceleration has on your code without having to restart
your application each time you make a change. By passing in the system property
com.apple.usedebugkeys=true and you can use function keys combinations to turn
hardware acceleration on and off. There are two sets of key combinations you can
use:

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

Modifying the Default Settings for Hardware Graphics Acceleration 67
 Apple Computer, Inc. September 2002

� Command-F7 to turn on hardware acceleration gracefully. This is equivalent to
the default behavior except that you may toggle it on and off while the
application is running. Option-F7 turns it off.

� Command-F8 forces hardware acceleration on. This differs from Command-F7
in that it forces everything to be hardware acceleration without applying any of
the logic that Command-F7 would use. This is for testing only, and you may see
unpredictable results. Option-F8 turns it off.

The com.apple.forcehwaccel runtime property allows you to force hardware
acceleration on or off without looking at the list of suggested video cards. This is
similar to using Command-F8 with com.apple.usedebugkeys as noted above except
that with com.apple.forcehwaccel, the state is explicitly determined at runtime.
Available values are true and false.

Another runtime property, com.apple.hwaccelnogrowbox, is provided so that you
can determine if hardware acceleration is on or off just by looking at a window. By
setting this to true, the grow box (called a resize control in Aqua) normally found
in the bottom right corner is not displayed if hardware acceleration is on. It will be
visible if hardware acceleration is not on. Setting this to false, gives you the default
behavior that shows the grow box regardless of whether hardware acceleration is
on or off.

Video Cards Designation Strings
Java hardware graphics acceleration is supported on most of the default video cards
in Apple computers, provided they have 16 MB or more of on-card video memory.
For the purpose of Java graphics hardware acceleration, each of these cards has been
assigned a distinct identifying string. There are a few ways of determining these
strings:

� If you are unsure of the type of video card in a computer, use the
hwaccel_info_tool available online at http://connect.apple.com. Instructions
on using this command-line tool are provided in a man page installed with the
tool.

Note: Once you have forced hardware acceleration on with Command-F8, you
cannot use Command-F7 to turn it on without restarting your application.

http://connect.apple.com

68 Specifying a Name and Icon for Command-Line Applications
 Apple Computer, Inc. September 2002

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

� If you know what type of video card is in your computer, you can determine the
appropriate string by looking in the hwaccelexclude.properties file in /System/
Library/Frameworks/JavaVM.framework/Versions/1.3.1/Home/lib or by
usingTable 6-1.

Specifying a Name and Icon for Command-Line
Applications

By default, Java processes that are launched from a shell do not show up in the Dock
or the menu bar until they show a window. If they never show a window, they
never appear in the Dock. This allows server-type processes to run behind the
scenes with no user-visible manifestation.

Table 6-1 Video-card designation strings

Video card model Memory String

ATI Rage Mobility 128 8 MB ATIRage128_8388608

ATI Rage 128 16 MB ATIRage128_16777216

ATI Radeon 16 MB ATIRadeon_16777216

ATI Rage 128 32 MB ATIRage128_33554432

ATI Radeon 7500 32 MB ATIRadeon_33554432

ATI Radeon 8500 32 MB ATIRadeon8500_67108864

NVidia GeForce2 32 MB NVidia11_33554432

NVidia GeForce3 64 MB NVidia20_67108864

NVidia GeForce4MX 64 MB NVidia11_67108864

NVidia GeForce4TNT 64 MB NVidia20_134217728

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

Using the Macintosh Menu Bar 69
 Apple Computer, Inc. September 2002

If you are running an application from the command line that opens a window, the
class name of the application’s main class appears as the application name in the
Dock and application menu. You may specify a more appropriate name to display
by using this command-line option:

-Xdock:name=applicationName

You can also specify an icon to replace the generic Java icon with this option:

-Xdock:icon=pathToIconFile

The icon file must be a Mac OS X icon file—the same type you would use for any
other Mac OS X application. If either the application name or path to the icon file
has spaces in it, wrap it in double quotes.

Using the Macintosh Menu Bar

In Swing, an application’s menu bar is applied on a per-frame (window) basis.
Similar to the Windows model, the menu bar appears directly under the frame’s
title bar. This is different from the Macintosh model, where the application has a
single menu bar that controls all of the application's windows. To solve the basic
problem, a runtime property is provided:

com.apple.macos.useScreenMenuBar

This property can have a value of true or false. If undefined, the standard Java
behavior equivalent to a value of false is used. When read by the Java runtime at
application startup, a given JFrame’s JMenuBar is placed at the top of the screen,
where a Macintosh user would expect it to be. Since this is a simple runtime
property that must be used by the host VM, setting it in your application has no
effect on other platforms since they do not even check for it.

Note that a JMenuBar attached to a JDialog does not appear at the top of the screen
as expected when setting this property, but rather inside the dialog as if the
property were not set. If your JDialog does not have a menu bar, the default parent
JFrame’s menu bar is displayed when the JDialog is brought into focus.

70 Using the Macintosh Menu Bar
 Apple Computer, Inc. September 2002

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

If you find the need to attach menus to a dialog window, you may want to consider
making the window a JFrame instead of a JDialog. A dialog should be informational
or present the user with a simple decision, not provide complex choices. A window
with enough functionality to necessitate a menu bar may be better as a JFrame.

Unfortunately, this solves only part of the problem—the placement of the menu bar.
The fundamental discrepancy between the idea of a single menu bar per application
of the Macintosh and a menu bar per window of Java, still exists. In other words,
setting this property causes the menu to appear at the top of the screen, but only
when the specific window it was assigned to is in focus. If your application has
multiple windows, and a window other than the one holding the menu bar is
focused, the menu bar vanishes. The Aqua guidelines state that the menu bar
should always be visible in an application; even an insignificant window such as an
alert dialog should still show the menu bar (though you may want to disable the
menus).

The Window Menu
One of the suggestions in Inside Mac OS X: Aqua Human Interface Guidelines is that all
Mac OS X applications should provide a Window menu to keep track of all
currently open windows. A Window menu should contain a list of currently active
(visible) windows, with the corresponding menu item checked if a given window is
currently in the foreground. Likewise, selection of a given Window menu item
should result in the corresponding window being brought to the front. New
windows should be added to the menu, and closed windows should be removed.
The ordering of the menu items is typically the order in which the windows
appeared. Inside Mac OS X: Aqua Human Interface Guidelines has more specific
guidance on the Window menu.

The Application Menu
Any Java application that uses AWT/Swing, or is packaged in a double-clickable
application bundle, is automatically launched with an application menu similar to
native applications on Mac OS X. This application menu, by default, contains the
full name of the main class as the title. This name can be changed using the
com.apple.mrj.application.apple.menu.about.name application property or the
-Xdock:name command-line property. According to the Aqua guidelines, the name
you specify for the application menu should be no longer than 16 characters. Figure
6-1 shows an application menu.

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

Using the Macintosh Menu Bar 71
 Apple Computer, Inc. September 2002

Figure 6-1 Application menu for a Java application in Mac OS X

The next step to customizing your application menu is to have your own handling
code called when an item in the application menu is chosen. Apple has provided a
means for this through interfaces in the com.apple.mrj package. Each interface has
a special callback method that is called when the appropriate application menu item
is chosen. The following callback interfaces for the application menu are available:

� com.apple.MRJAboutHandler, to handle the About menu item.

� com.apple.MRJPrefsHandler, to handle the Preferences menu item.

� com.apple.MRJQuitHandler, to trigger final clean-up logic when the Quit menu
item is chosen. By default, that Quit menu item just calls System.exit. You might
actually want to do more than just exit.

To handle a given application menu item:

1. Implement the appropriate handler interface.

2. Define the appropriate handler method in your implementation: handleAbout,
handlePrefs, or handleQuit.

3. Register your handler using the appropriate static methods in the
com.apple.mrj.MRJApplicationUtils class: either registerAboutHandler,
registerPrefsHandler, or registerQuitHandler.

You can see examples of these implementations in a default Swing application
project in Project Builder.

72 More MRJ Handlers
 Apple Computer, Inc. September 2002

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

If your application is to be deployed on other platforms, where Preferences, Quit,
and About are accessed elsewhere on the menu bar (in a File or Edit menu, for
example), you may want to make this placement conditional based on the operating
system of the host platform. This is preferable to just adding a second instance of
each of these menu items for Mac OS X. This minor modification can go a long way
to making your Java application feel more like a native application on Mac OS X.

More MRJ Handlers

In addition to the interfaces provided for handling application menu items, Java on
Mac OS X provides two other handlers:

� com.apple.MRJOpenApplicationHandler, which lets you respond to an Open
Application Apple event.

� com.apple.MRJOpenDocumentHandler, that responds to double-clicking a
supported document or the dragging of a document onto your application’s
icon.

These handler interfaces are intended to enhance a Java application’s behavior in
the Mac OS X Finder and are used in the same manner as the application menu
interfaces described above.

Localizing Packaged Java applications on Mac OS X

To run correctly in non-English locales, Java applications bundles need to have the
appropriate localized folders inside the application package. This is true even if the
Java application handles its localization through Java ResourceBundles. Specifically,
you need to have a folder named with the locale name and the .lproj suffix present
in the application’s Resources folder for any locale that you wish to use. For
example, you need a Japanese.lproj folder inside YourApplication.pkg/Contents/
Resources/ in order for Japanese localization to work correctly. The folder itself can

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

QuickTime for Java 73
 Apple Computer, Inc. September 2002

be empty, but it must be present for Mac OS X to set the locale correctly when the
application launches. Otherwise Mac OS X launches your application with the
English US locale.

The Bundle Services documentation and Inside Mac OS X: System Overview, both
available from http://developer.apple.com/techpubs, provide more details about
the application bundle format.

QuickTime for Java

QuickTime for Java provides a cross-platform API that allows Java developers to
build multimedia components, including streaming audio and video, into
applications and applets for both Macintosh and Windows. More information on
QuickTime for Java is available online at http://developer.apple.com/quicktime/
qtjava/.

Java Core Audio Packages

Mac OS X includes a very robust sound subsystem. Hooks for using this system
directly from Java are provided in the Java Core Audio packages. More information
on the Mac OS X Core Audio framework can be found online at http://
developer.apple.com/audio. The Java Core Audio API documentation is available
at http://developer.apple.com/techpubs/java.

Java Spelling and Speech Frameworks

Two very useful frameworks, Spelling and Speech, are also available for you to use
in Mac OS X. These are implemented as Java Beans. The source code, examples, and
documentation are available at http://developer.apple.com/java.

http://developer.apple.com/techpubs
http://developer.apple.com/quicktime/qtjava/
http://developer.apple.com/quicktime/qtjava/
http://developer.apple.com/audio
http://developer.apple.com/audio
http://developer.apple.com/techpubs/java
http://developer.apple.com/java

74 JDirect
 Apple Computer, Inc. September 2002

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

JDirect

In addition to the standard Java Native Interface, Mac OS X also includes JDirect3.
JDirect3 allows access to preexisting native code libraries from Java without you
needing to explicitly use JNI. It builds JNI stubs for you on the fly.

JDirect3 is not a standard part of J2SE, and it is important to keep in mind that it ties
your code to Mac OS X. JDirect3 is not recommended for future new development
since changes in future releases of Mac OS X will yield your code unusable.

 JDirect1, which has been deprecated since 1997, is not supported in Mac OS X. If
you have JDirect2 code, it requires minor modifications to run under JDirect3. If you
are porting old JDirect2 code to JDirect3, there are a few important details to keep
in mind as the following sections discuss.

Human Interface Toolbox Synchronization
You must synchronize all Human Interface Toolbox calls. Since Java threads are
native Mach threads and can preempt Toolbox calls made by the host application or
by other Java threads otherwise. The Java implementation itself is based on the
Carbon threading model in Mac OS X. This threading model is neither reentrant or
thread-safe. Since reentrant calls can corrupt memory or crash your application, it
is important that only one thread be inside Carbon at any time.

 This is the correct way to call the Toolbox from Java on Mac OS X:

import com.apple.mrj.macos.carbon.CarbonLock;
try {
 CarbonLock.acquire();

//Carbon call here

} finally {
 CarbonLock.release();
}

This way the Carbon lock handling can easily be reversed for JDirect callbacks.

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

JDirect 75
 Apple Computer, Inc. September 2002

Be sure to use CarbonLock around all Carbon calls. Since threads are preemptive on
Mac OS X, you should hold the Carbon lock for the shortest amount of time
possible.

Make sure not to do anything that might throw an exception in the finally block
that calls CarbonLock.release. Structure your code so that the Carbon locking is
separate from other finally blocks.

Debugging Features for JDirect
To help debug JDirect on Mac OS X, you can define a shell variable, JDIRECT_VERBOSE
to write verbose JDirect loading info to stderr. This works only when launching
Java code from the command line, not when double-clicking a bundled application
in the Finder. You can launch any double-clickable application from the command
line by specifying the path to the application’s executable.

For example, to set the shell variable, and then launch an application called Foo.app,
you would do the following in csh:

setenv JDIRECT_VERBOSE

/path/Foo.app/Contents/MacOS/Foo

MethodClosureUPP Not Supported
The class MethodClosureUPP was created for use in Mac OS 9 and is not supported in
Mac OS X. If you are using Carbon callbacks and want code that can run in Mac OS
9 and Mac OS X, you need to have a helper class that creates a new MethodClosureUPP
when in Mac OS 9 or a new MethodClosure when in Mac OS X.

JDirect Access to Bundles
Normally, your JDirect_MacOSX string is a full path to a dylib, which is the standard
packaging for shared Mach-O binaries in Mac OS X. You can also specify a full path
to a bundle. The bundle path name must end in .bundle and be a properly
constructed directory. A bundle can use both Mach-O binaries and CFM binaries.
The Bundle Services documentation in Inside Mac OS X: System Overview has more
details.

76 Embedding Applets in Native Applications
 Apple Computer, Inc. September 2002

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

Embedding Applets in Native Applications

If you are a Mac OS X developer that needs to embed Java applets inside of your
native application, use the Java Applet Plug-in (Java Applet.plugin) architecture of
Mac OS X. In previous versions of Mac OS X, you might have used Java Embedding
framework. Though this framework still works, it is not recommended for future
development. It may change significantly in future versions of Java on Mac OS X.

As illustrated in Figure 6-2, using the Java Applet Plug-in architecture will allow
applets displayed in you application to take full advantage of Sun’s Java Plug-in;
the Java Embedding framework provides only a subset of that functionality. The
Java Applet Plug-in therefore provides both developmental benefits for developers
as well as an enhanced user experience for applets displayed in your application.

Figure 6-2 Java Applet Plug-in versus Java Embedding Framework

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

Cocoa Java 77
 Apple Computer, Inc. September 2002

The Java Applet Plug-in architecture allows your native code access to Sun’s Java
Plug-in which in turn lets you access a virtual machine. Since it is a standard
Netscape 4.0 style plug-in, you may also use it to provide Java support inside native
applications. Java Applet.plugin is a native Mach-O library. It is a standard Mac OS
X bundle. It exports the same symbols that the UNIX Netscape plug-in exports.
Complete details on integrating a Netscape-style plug-in is beyond the scope of this
document, but additional information on that architecture is available at http://
developer.netscape.com/docs/manuals/communicator/plugin/.

Cocoa Java

In Mac OS X, Cocoa applications can be written in Java as well as their native
Objective-C. Cocoa Java applications will behave just like a native applications but
will not be portable to other platforms.

If you are using Cocoa Java for your user interface, it is important that you do not
try to mix Cocoa Java with standard Java components. Since many of these
components are Carbon-based, you will run into many problems. In particular, you
should avoid trying to mix the following with Cocoa Java:

� Swing/AWT components, including Java events

� QuickTime for Java components

� JDirect calls

The main reason for this is that Carbon and Cocoa use different run loops, which
conflict with one another if mixed in the same application.

More information on Cocoa Java is available at http://developer.apple.com/
techpubs/cocoa.

http://developer.netscape.com/docs/manuals/communicator/plugin/
http://developer.netscape.com/docs/manuals/communicator/plugin/
http://developer.apple.com/techpubs/cocoa
http://developer.apple.com/techpubs/cocoa

78 Cocoa Java
 Apple Computer, Inc. September 2002

C H A P T E R 6

Using Native Features of Mac OS X in Java Applications

Building a Java Application With Project Builder 79
 Apple Computer, Inc. September 2002

A P P E N D I X A

A Project Builder Tutorial

Apple provides a complete set of development tools free with Mac OS X. This set
includes compilers, a debugger, a complete integrated development environment
(IDE), as well as many other tools and resources. Apple’s IDE, Project Builder,
allows you to edit, compile, debug, and package your Java applications. This
chapter provides a simple tutorial on using Project Builder to build a Swing-based
Java application and an applet.

Building a Java Application With Project Builder

To follow this example, you need to have the Mac OS X Developer Tools installed.
Project Builder is installed in /Developer/Applications. The sourcecode files you
need are ExampleFileFilter.java, ExampleFileView.java, and
FileChooserDemo.java; they are installed in /Developer/Examples/Java/JFC/
FileChooserDemo. If you do not see these files you need, install the Mac OS X
Developer Tools. If you do a custom install, make sure that the Developer Example
and Developer Tools Software packages are installed. For this example you will
build Sun’s FileChooserDemo that lets you see how different Java look and feel
designs display file browsers.

The Makeup of a Project Builder Project
Open Project Builder. From the Project Builder File menu choose New Project.

80 Building a Java Application With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

You see that you can use Project Builder to create AppleScript, Carbon, Cocoa, and
Java applications as well as bundles, tools, frameworks, kernel extensions, and
plug-ins. In the Java section, there is support for creating several types of Java
projects including tools, applets, and applications. Select Java Swing Application by
double-clicking it.

Enter FileChooserDemo in the Project Name field and place the project in a location
that is convenient for you by either entering a pathname or by clicking the Choose
button and navigating using the browser. In either case, the Location field displays
the location of your project.

 Click Finish. Project Builder generates the appropriate files and places them inside
the directory that you specified.

A look at this project’s directory in the Finder reveals the files that Project Builder
creates when you make a new project as shown in Figure A-1.

Figure A-1 Project folder contents

A P P E N D I X A

Project Builder Tutorial

Building a Java Application With Project Builder 81
 Apple Computer, Inc. September 2002

The build directory contains the results of building your project. The file
FileChoserDemo.icns contains the icons for your application. This file is the icon set
that Project Builder assigns by default to Java applications if you do not specify
another .icns file to use. FileChooserDemo.pbproj is the Project Builder project file.
It contains generated meta data about your project, and Project Builder maintains
this file. FileChooserDemostring.properties maintains a list of localizable strings.
There are also two Java source files.

To further explore the interactions of these parts of the FileChooserDemo project,
make Project Builder active again.

In the Files list you see the same basic layout as in the Finder. With such a simple
project, it might appear that the Files list is just a mirror of the file-system layout. It
is important to note that this is not the case. Project Builder keeps track of the files
in your project by means of references. It does not have to actually copy the file to
the project folder. This allows you to set up your project in the Files list in a manner
that streamlines development without having to be concerned with how the files
are structured on disk. You could, for example, have source code in a directory
different from that of your Project Builder project.

Building a Java Project
Before making any changes to your new project, verify that it builds a valid Java
application. Choose Build and Run from the Build menu. You can also click the
Build and Run button (the one with the hammer and computer monitor) in the
toolbar or simply press Command-R. Your application should build and then
launch a simple Hello World application. It’s window should look like the one
shown in Figure A-2.

82 Building a Java Application With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

Figure A-2 Result of building a default project

Notice the generic Java icon in the Dock for this application.

Figure A-3 Generic Java icon

Also notice that the application, though a pure Java application, takes on the Aqua
look and feel of a Mac OS X application, right down to the genie effect when you
minimize the window.

Project Builder has not only compiled the .java source files, but also wrapped the
resulting Java application as a Mac OS X application. In the Finder you can see the
double-clickable Mac OS X application inside your project folder in the Build
directory. In building the Mac OS X application, Project Builder has set certain
system properties. For example, by default Project Builder passes the flag
-Dcom.apple.macosx.useScreenMenuBar=true to your application when it runs. This
puts the menu bar at the top of the screen where it is in native Macintosh
applications.

A P P E N D I X A

Project Builder Tutorial

Building a Java Application With Project Builder 83
 Apple Computer, Inc. September 2002

Adding Your Source Files
Building a default application is nice, but how do you get your code to build in
Project Builder? So far you have only built and run the default files provided in the
Java Swing application template. Now you are going to add modify the template to
get a feel for how you can modify the default Project Builder templates with your
own Java source code.

If the FileChooserDemo application is still running, quit it. You can do this either by
clicking the Stop button in the Project Builder toolbar or by pressing Command-Q
in the application itself. Before adding the correct source files, you need to remove
the two source files that Project Builder gave you by default. In the Files list, you see
FileChooserDemo.java and AboutBox.java as indicated in Figure A-4.

84 Building a Java Application With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

Figure A-4 Default files in a new Java Swing application

FileChooserDemo.java contains the main method invoked when the application runs.
You will replace this file with the FileChooserDemo.java source file in /Developer/
Examples/Java. The use of MRJAboutBox and MRJQuitHandler in
FileChooserDemo.java allows your Java application to more closely resemble a
native Mac OS X application. Their use, however, is beyond the scope of this
example. There is another file, AboutBox.java, which contains the AboutBox class
that is used in conjunction with the MRJAboutHandler.

A P P E N D I X A

Project Builder Tutorial

Building a Java Application With Project Builder 85
 Apple Computer, Inc. September 2002

To get rid of the old FileChooserDemo.java file, select it in the Files list and choose
Delete from Project Builder’s Edit menu. In the alert that appears, click Delete
References & Files. This removes the reference to the file in Project Builder and
deletes the file from your project directory. Delete AboutBox.java in the same
manner.

Figure A-5 Delete References alert

You now have a Java project with no source files. From the Project menu, choose
Add Files. Navigate to /Developer/Examples/Java/JFC/FileChooserDemo/src either
in the browser or by typing the path in the "Go to” field. Select
ExampleFileFilter.java, ExampleFileView.java, and FileChooserDemo.java. Click
Add.

86 Building a Java Application With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

Figure A-6 Selecting files to add to a Java project

In the next dialog, you need to decide whether to copy the files themselves into the
project folder or just make references to them. Do you want a local version that you
can alter without affecting other projects or do you want to maintain a single copy
of that source file? In this case the former is appropriate so select the option “Copy
items into destination group’s folder.” Leave the Reference Style pup-up menu set
to Default. Since you are not adding any folders, your choice for the folder reference
radio buttons does not matter. Click Add.

A P P E N D I X A

Project Builder Tutorial

Building a Java Application With Project Builder 87
 Apple Computer, Inc. September 2002

Figure A-7 Copy items into project folder option

Once you have the appropriate files in your project, you can compile the Java code
and build the Mac OS X application. Since you removed some files and added
others since your last build, it is a good idea to clean the active target before
building. If you don’t clean the active target, you might get build errors. From the
Build menu select Clean. Dismiss the resulting warning by clicking Clean Active
Target. Now you are ready to build. Click the Build button (with the hammer icon)
in the Project Builder toolbar or choose Build from the Build menu. Look at the
results of this process by opening your project folder in the Finder.

88 Building a Java Application With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

Figure A-8 Contents of a built application

At the top level of the project directory are the source files and the
FileChooserDemo.icns file that were there before. The build directory now contains
the class files and the Mac OS X double-clickable application, FileChooserDemo.
You can see how everything was built by looking at the messages in Project
Builder’s Build pane. When Project Builder builds a Java application, the source
code is compiled, archived as a JAR file, and then converted to a Mac OS X
application.

Modifying the Application Parameters
Although Project Builder did compile the Java source files and used jar to archive
them together, it also put together the Mac OS X application bundle. In doing this it
evaluates certain settings in Project Builder to construct the property lists that Java
on Mac OS X uses at runtime. (see “Property List Attributes for Java Applications”
(page 31)). For example, Project Builder determined the name FileChooserDemo to

A P P E N D I X A

Project Builder Tutorial

Building a Java Application With Project Builder 89
 Apple Computer, Inc. September 2002

display in the title bar and determined the main class to run when your application
is double-clicked in the Finder. Some properties don’t get set automatically though
and some retain default values unless you specify otherwise. For example if you
launch the FileChooserDemo application, you can see that the default Java icon is
still in the Dock. This icon is added to your application bundle if you don’t add your
own icon.

It is simple to modify the generic Java runtime properties of your application or to
add specific Mac OS X properties from Project Builder. In your FileChooserDemo
Project window, click the Targets tab. Select the FileChooserDemo target in the top
left window. It should be the only target there. (If you are using Project Builder’s
multi window user interface, double click the target.) In the resulting window or
pane you can modify many different aspects of that target as Figure A-9 shows.

90 Building a Java Application With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

Figure A-9 Target settings

There are many settings here that you can modify, but the ones you will probably
modify the most include those in Pure Java-Specific. To see how you can modify
these, select the Pure Java-Specific section. Project Builder should display a window
that looks like the one in Figure A-10.

A P P E N D I X A

Project Builder Tutorial

Building a Java Application With Project Builder 91
 Apple Computer, Inc. September 2002

Figure A-10 Pure Java-Specific settings

This pane shows the default settings. To see the effect of changing settings here, add
a command-line setting to the Additional Properties list, then clean and rebuild the
application. For example:

1. Click the plus (+) button under Additional Properties.

2. Replace the highlighted new.property with
com.apple.mrj.application.live-resize.

3. Replace value with true.

4. Choose Clean from the Build menu. In the sheet select Clean Active Target.

5. From the Build menu, select Build and Run.

92 Building a Java Application With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

You can see in the resulting application that if you resize the window it now
attempts to fill in the contents as the window is resizing, instead of just resizing an
outline of the window. You can also see why this system property is off by default!
(For an application with a simpler window, turning on this system property might
be beneficial.)

You can add any properties in the Pure Java Specific section that you might pass in
at the command line. Those that you pass in with the -D flag should go in the
Additional Properties section. Those that you pass in with -X should go into the
Additional VM Options section.

Having tried an option that didn’t make your application better, you should remove
it. In removing it though, try using the Expert View indicated in Figure A-11. Just
select the offending property, and delete it.

Figure A-11 Expert View

A P P E N D I X A

Project Builder Tutorial

Building Applets With Project Builder 93
 Apple Computer, Inc. September 2002

Now if you clean, build, and run the application, you should see that the original
behavior has returned. This is seen in Figure A-12. Whether modifying the settings
in the Expert View or Simple View, you are really just modifying the property list
entries as discussed in “Property List Attributes for Java Applications” (page 31).

Figure A-12 Default setting for live resizing

With the basic steps presented here, you have the foundation to build your own
Java applications in Project Builder and take advantage of the value it adds by
allowing users to run your pure Java application just like they would any other Mac
OS X application.

Building Applets With Project Builder

Building applets with Project Builder is very similar to building applications. Since
applets are hosted within another application, there is no need to convert them to
Mac OS X applications like you did with the Pure Java application. Having built an
application in Project Builder, building your applet should be very straightforward.

94 Building Applets With Project Builder
 Apple Computer, Inc. September 2002

A P P E N D I X A

Project Builder Tutorial

As with the application, the simplest way to start is with one of Project Builder’s
templates. By adding your own files and removing the default files, you can quickly
get your own applets built in Project Builder.

Build one of the applets in /Developer/Examples/Java/Applets. For example:

1. Open a new Project Builder project. Use the Java AWT Applet template. Name
it ArcTest.

2. Delete the ArcTest.java and example1.html files.

3. Add in ArcTest.java and example1.html from /Developer/Examples/Java/
Applets/ArcTest like you did in “Adding Your Source Files” (page 83).

4. Clean and Build the applet.

Once you have built your applet, you can test it by loading the HTML file into a
browser or into the Applet Launcher application found in /Applications/
Utilities/Java. As illustrated in Figure A-13, just put in the path to the HTML file
that Project Builder generated. This file is in your project folder in build/
ArdTest.build/ArcTest.build/JavaClasses.

Figure A-13 Applet Launcher

By following this short tutorial, you should now see that Project Builder gives you
a simple-to-use development environment for pure Java development, while also
helping you to make your Java applications fit seamlessly into Mac OS X.

Building a Basic Application 95
 Apple Computer, Inc. September 2002

A P P E N D I X B

B MRJAppBuilder Tutorial

Although command-line Java applications are great for development, when you
want to distribute your application, you want the user to be able to launch it just like
any other Mac OS X application—without a trip to the command line.
MRJAppBuilder allows you to take your existing Java .class or .jar files and wrap
them into a Mac OS X application bundle. This chapter provides a simple tutorial
that you can work through to help you understand this process.

To follow this example, you need to have the Mac OS X Developer Tools installed.
MRJAppBuilder is installed in /Developer/Applications. The sourcecode files you
need are ExampleFileFilter.java, ExampleFileView.java, and
FileChooserDemo.java; they are installed in /Developer/Examples/Java/JFC/
FileChooserDemo/src. If you do not see these files, install the Mac OS X Developer
Tools. If you do a custom install, make sure that the Developer Example and
Developer Tools Software packages are installed. This example will take a JAR file
and show you how to bundle it as a Mac OS X application.

Building a Basic Application

MRJAppBuilder works with either stand-alone class files or class files in a JAR file.
Since most of the source code in /Developer/Examples/Java is not compiled, the first
step is to compile a selection to obtain the class files.

In this example, you will use the FileChooserDemo application. From Terminal,
compile the three Java files in /Developer/Examples/Java/JFC/FileChooserDemo/src
with javac -d /tmp /Developer/Examples/Java/JFC/FileChooserDemo/src/*.java.
This gives you the required class files.

96 Building a Basic Application
 Apple Computer, Inc. September 2002

A P P E N D I X B

MRJAppBuilder Tutorial

Once you have the class files, open the MRJAppBuilder application in
/Developer/Applications. When the application opens, you are presented with the
Application pane. The required fields for building a valid application are all present
in this pane.

In this example set the main classname to FileChooserDemo. This is the class that
contains the main method. Set the classpath to /tmp. In this example, there are only
class files in the classpath. It might be appropriate in a more complicated
application for the classpath to include image, font, or sound files as well. Set the
output file to whatever location is convenient to use for testing your application.
This field should include the fully qualified intended location and name of the
resultant application, for example /tmp/FileChooserDemo.app. Be sure to append the
.app suffix to the name you choose for this application. The result should be similar
to Figure B-1.

A P P E N D I X B

MRJAppBuilder Tutorial

Building a Basic Application 97
 Apple Computer, Inc. September 2002

Figure B-1 MRJAppBuilder Application pane

With these three fields filled in, you are ready to build the application. Click the
Build Application button. You are informed that your build was successful.

98 Building a More Robust Application
 Apple Computer, Inc. September 2002

A P P E N D I X B

MRJAppBuilder Tutorial

Figure B-2 A successful build

 Navigating in the Finder to the directory you specified in the “Output file” field
reveals a double-clickable application. (Hint: In Finder, choose Go to Folder from
the Go menu.)

Building a More Robust Application

The example in “Building a Basic Application” (page 95) worked fine, but notice
that you set the path to a specific directory, /tmp. Unless your users happen to have
the appropriate class files installed in /tmp, this application won’t work on their
computers. How do you get around this? That leads to another pane in
MRJAppBuilder. Before using it though you need to prepare the appropriate files.
In this example, navigate to your /tmp directory and make a JAR file from the class
files you put there as follows:

jar cf FileChooserDemo.jar *.class

You should still have MRJAppBuilder open. If not go ahead and open it and set it
up the way it was before. Click the tab labeled Merge Files. It gives you the option
to add files. Click the Add button and choose the JAR file you just made. The result
should look like Figure B-3.

A P P E N D I X B

MRJAppBuilder Tutorial

Building a More Robust Application 99
 Apple Computer, Inc. September 2002

Figure B-3 Merge Files pane

The JAR file is copied into the /Contents/Resources/Java directory of the resulting
application bundle. Now go back to the Application pane. Notice that the path to
this JAR file was automatically added to the /tmp path you had there before. (You
can get rid of that reference to /tmp now if you haven’t already.) You now have a
Mac OS X application that a user can install by simply dropping in the Finder
without having to deal with installing anything else or being concerned with where
the application is installed.

100 Making Your Application More Mac-like
 Apple Computer, Inc. September 2002

A P P E N D I X B

MRJAppBuilder Tutorial

Making Your Application More Mac-like

So far you have built a basic application that has some features that Mac users
expect. For example they can install it with a simple drag and drop. If you launch
that application, you will notice something missing. The icon in the Dock is a
generic Java icon. You can fix that easily enough in MRJAppBuilder. For the sake of
this example, just copy an icon from another application, in this case the icon from
the prebuilt version of the FileChooserDemo application. To do this, select the
generic icon in the Application pane. It is near the bottom of the pane, in the
“Output file” section. If you click it, it opens a file chooser. Navigate to the file
named JavaApp.icns in /Developer/Examples/Java/JFC/FileChooserDemo/
FileChooserDemo.app/Contents/Resources and click Select. (You will probably need
to change the Format pop-up menu to All Files from the default Icon Files to
navigate there.) Now if you build the application, you should see that it displays the
new icon in the Dock.

Java Properties Pane
An icon is only the first step. There are a few other things you can do to make a
well-written Java application hard to distinguish from a native Mac OS X
application. MRJAppBuilder provides an interface for making a lot of these changes
in the Java Properties pane. Before going there, launch the FileChooserDemo
application that you just built. Notice that the window has a white bar at the bottom
of the window as shown in Figure B-4.

A P P E N D I X B

MRJAppBuilder Tutorial

Making Your Application More Mac-like 101
 Apple Computer, Inc. September 2002

Figure B-4 FileChooserDemo application with relics

This is because by default, MRJAppBuilder sets certain system properties. In this
case, com.apple.mrj.application.growbox.intrudes is set to false. The result is that
an extra 15 pixels are added to the window. You can correct this in the Java
Properties pane.

Click the Java Properties tab. This pane contains properties that are passed to the
application when it is run. Of special note here is the Parameters property. This is
where you can specify any command-line parameters that need to be passed to your
application when it is run. To see the effect of modifying the Java properties, change
the value of the growbox.intrudes property from false to true as in Figure B-5.

102 Making Your Application More Mac-like
 Apple Computer, Inc. September 2002

A P P E N D I X B

MRJAppBuilder Tutorial

Figure B-5 Modifying the growbox.intrudes property

Quit the previously built FileChooserDemo if it is still running, and build and run
the new version. Notice that the relics no longer surround the window when you
switch between the different interface styles.

A P P E N D I X B

MRJAppBuilder Tutorial

Making Your Application More Mac-like 103
 Apple Computer, Inc. September 2002

Figure B-6 com.apple.mrj.application.growbox.intrudes=true

You can change the value of the other properties by clicking the appropriate value
field and making the desired change. See Appendix C, “Mac OS X Java System
Properties” (page 105), for a listing and description of some Mac OS X system
properties.

Mac OS X Pane
The Mac OS X pane allows you to set attributes of the Mac OS X application bundle.
Features like the application icon and name can be set here. For information on
these keys and how to use them, see Inside Mac OS X: System Overview, available
online at http://developer.apple.com/techpubs/macosx/Essentials/
SystemOverview. These are not explored in this tutorial.

In this tutorial, you have seen how to wrap your JAR files into a native Mac OS X
application, and you have seen how to modify the parameters of that application to
build an application that fits in with the native applications in Mac OS X. There was
no magic going on behind the scenes. MRJAppBuilder is a very simple application
that builds an application bundle directory structure, determines runtime options
to be passed to the Java virtual machine when the application is invoked, and sets
some Mac OS X application properties. To get a glimpse inside an application in
Mac OS X, you can either explore the directory of the .app from the Terminal or from
the Finder. To see what is contained inside an application bundle generated by
MRJAppBuilder, Control-click an MRJAppBuilder-generated application. You
could use the FileChooserDemo application or even MRJAppBuilder itself. Inside is
a structure similar to Figure B-7

http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview
http://developer.apple.com/techpubs/macosx/Essentials/SystemOverview

104 Making Your Application More Mac-like
 Apple Computer, Inc. September 2002

A P P E N D I X B

MRJAppBuilder Tutorial

Figure B-7 Application bundle contents

Once you have built an application bundle with MRJAppBuilder, you might want
to fine tune the settings in the Info.plist or the MRJApp.properties files by hand.
Any text editor will do and you won’t need to set up all of the fields in
MRJAppBuilder each time you want to make changes.

Java Virtual Machine Properties 105
 Apple Computer, Inc. September 2002

A P P E N D I X C

C Mac OS X Java System Properties

This appendix lists the Mac OS X–specific system properties that you should be
aware of.

Java Virtual Machine Properties

You can use System.getProperties().list(System.out) to obtain a complete list of
system properties. The most useful ones are included here, as well as brief
descriptions.

The properties in Table C-1 all return a value of type String. They can be used in
this manner:

if (System.getProperty("os.version").equals("10.2"))

106 Java Virtual Machine Properties
 Apple Computer, Inc. September 2002

A P P E N D I X C

Mac OS X Java System Properties

 System.out.println("Mac OS X version 10.2 Jaguar");

Table C-1 JVM properties

Property Value Notes

java.version 1.3.1

java.vm.version 1.3.1_03-69

line.separator ‘\n’ This differs from MRJ in Mac OS 9, which used \r,
but is consistent with UNIX-based Java
implementations and with the BSD and Cocoa
frameworks.

mrj.version 3.3 Testing for the existence of this property is the
general way to detect whether you are using an
Apple-developed JVM. To detect specific features
like JDirect or MRJToolkit, it is better to use
reflection to check for the existence of the specific
classes they use.

os.name Mac OS X This value was Darwin in developmental versions
of Mac OS X. The MRJ on Mac OS 9 used Mac OS. It
is suggested that you use
System.getProperty("os.name").startsWith("Mac
OS") if you need to test whether your code is
running on any version of Mac OS.

os.version 10.2 This is the version number available in the About
This Mac dialog. Developmental versions of Java
on Mac OS X used the Darwin kernel number (1.1,
1.2, and so forth)

A P P E N D I X C

Mac OS X Java System Properties

Mac OS X Application Properties 107
 Apple Computer, Inc. September 2002

Mac OS X Application Properties

It is simple to wrap your pure Java application inside of a natively executable Mac
OS X application bundle. This is discussed in “Mac OS X Java Applications”
(page 28). In so doing, there are two properties that must be defined. These are
listed in Table C-2. If you are using Project Builder or MRJAppBuilder, you do not
need to do anything to define them since both of those applications take care of this
for you.

Table C-2 required Mac OS X application properties

Property Info.plist key Description

com.apple.mrj.application.main MainClass The fully qualified class
name of the class
containing the
application’s main
method.

com.apple.mrj.application.classpath ClassPath The paths of all
required directories or
JAR files.

108 Mac OS X Application Properties
 Apple Computer, Inc. September 2002

A P P E N D I X C

Mac OS X Java System Properties

In addition, you can pass in the options listed in Table C-3.

Note the following about these properties:

� None of these properties are set by default.

� If you are adding properties to an Info.plist, they should go into the Java
dictionary.

� When adding properties to an Info.plist, do not use the fully qualified package
name. Instead use the Info.plist key value designated in the appropriate table.

� In setting the values for any of these keys, you may take advantage of two
variables unique to application bundles:

APP_PACKAGE

The root directory of the application bundle.

Table C-3 Application launch properties

Property Info.plist Key Description

com.apple.mrj.application
.parameters

Arguments Space-separated list of arguments
that are parsed to build the
String[] passed to main.

com.apple.mrj.application
.workingdirectory

WorkingDirectory Sets the current working
directory for the application. By
default the current working
directory is set to the parent
directory of the application
bundle. The APP_PACKAGE variable
may be used to refer to the root of
the application bundle.

com.apple.mrj.application
.vm.options

VMOptions Space-separated list of options for
the Java virtual machine. These
are the -X and -XX options
without the -X(X) prefix.

A P P E N D I X C

Mac OS X Java System Properties

Mac OS X Application Properties 109
 Apple Computer, Inc. September 2002

JAVAROOT

This is not set by default. If you do set it in the Info.plist file, you may
use $JAVAROOT to resolve its value.

Mac OS X–Specific Properties
The properties listed in Table C-4 are all properties that are found only on Mac OS
X. Overall they help your applications to fit in more cleanly with the rest of the Mac
OS X environment. They can be set three ways:

� In the Info.plist or MRJApp.properties files through Project Builder or
MRJAppBuilder respectively. You can modify these files later with a text editor.

� In your main class as arguments to System.setProperty.

� From the command-line using the -D flag as follows:

java -Dcom.apple.macosx.useScreenMenuBar=true YourSwingApp

Note: These variables are used only by Mac OS X for launching your application.
Do not use them in your Java code.

110 Mac OS X Application Properties
 Apple Computer, Inc. September 2002

A P P E N D I X C

Mac OS X Java System Properties

Table C-4 System properties related to the graphical user interface

Property Default Value Notes

com.apple.hwaccel true Turns on hardware graphics
acceleration for the video cards not
commented out of /Library/Java/
Home/lib/hwexclude.properties.If
set to false, hardware acceleration
is turned off. It may be used in
conjunction with the
com.apple.hwaccelexclude
property.

com.apple.hwexclude none When specific video card
designation strings are passed in
with this property, hardware
graphics acceleration is not turned
on for the respective video cards.
It is be on for all other video cards.
When this property is set, /
Library/Java/Home/lib/
hwexclude.properties is ignored.

com.apple.macos.use-file-dialog-packages false When set to true, causes
java.awt.FileDialog to show
application packages as if they
were files and does not allow
navigation into them.

com.apple.macos.useScreenMenuBar false Puts Swing menus in the Mac OS
X menu bar if using the Aqua look
and feel. Java applications created
with Project Builder have this set
to true. Note that JMenuBars in
JDialogs are not moved to the Mac
OS X menu bar.

A P P E N D I X C

Mac OS X Java System Properties

Mac OS X Application Properties 111
 Apple Computer, Inc. September 2002

com.apple.macos.useSmallTabs none If defined, and set to true, tab
controls in Swing applications
more closely resemble the Metal
look and feel. If set to false, the
tabs assume a larger size more
similar to the default Aqua
controls.

com.apple.macosx.AntiAliasedTextOn true Use anti-aliasing when rendering
text.

com.apple.macosx.AntiAliasedGraphicsOn true Use anti-aliasing when rendering
graphics.

com.apple.mrj.application.apple.menu.abo
ut.name

None If defined, an About command is
added to the top of the application
menu and can be detected by
registering a
com.apple.mrj.AboutHandler. Java
applications created with Project
Builder have this set to initial
name of your project.

com.apple.mrj.application.growbox.intrud
es

true Resizable window’s growbox
(resize control) intrudes into AWT
content. If turned off, the bottom
of the window is pushed down 15
pixels.

com.apple.mrj.application.live-resize false Enables live resizing of windows.

Table C-4 System properties related to the graphical user interface

Property Default Value Notes

112 Mac OS X Application Properties
 Apple Computer, Inc. September 2002

A P P E N D I X C

Mac OS X Java System Properties

113
 Apple Computer, Inc. September 2002

7 Glossary

application bundle The executable code
and related resources as they are packaged
into a prescribed directory hierarchy.

Apple menu A menu that provides items
that are available to users at all times,
regardless of which application is active. It is
the leftmost menu in the menu bar.

application menu A menu that contains
items that apply to the application as a
whole, rather than to a specific document or
other window. The application menu is
immediately to the right of the Apple menu.

Apple Developer Connection The primary
source for technical and business resources
and information for anyone developing for
Apple's software and hardware platforms
anywhere in the world. It includes programs,
products, and services and a website filled
with up-to-date technical documentation for
existing and emerging Apple technologies.
The Apple Developer Connection is at http:/
/www.apple.com/developer/.

AppleScript A scripting language used to
control the actions of the computer and the
applications that run on it.

Aqua The graphical user interface for Mac
OS X.

bundle A directory in the file system that
stores executable code and the software
resources related to that code. Applications,

plug-ins, and frameworks are types of
bundles. Except for frameworks, bundles are
file packages, presented by the Finder as a
single file.

BSD Berkeley Software Distribution.
Formerly known as the Berkeley version of
UNIX, BSD is now simply called the BSD
operating system. The BSD portion of Mac
OS X is based on 4 FreeBSD 4.4, a “flavor” of
4.4 BSD.

Carbon An application environment for
Mac OS X that features a set of programming
interfaces derived from earlier versions of the
Mac OS. The Carbon API has been modified
to work properly with Mac OS X, especially
with the foundation of the operating system,
the kernel environment. Carbon applications
can run in Mac OS X, Mac OS 9, and all
versions of Mac OS 8 later than Mac OS 8.1.

Cocoa An advanced object-oriented
development platform for Mac OS X. Cocoa
is a set of frameworks with programming
interfaces in both Java and Objective-C. It is
based on the integration of OPENSTEP,
Apple technologies, and Java.

Classic An application environment for
Mac OS X that lets you run non-Carbon
legacy Mac OS software. It supports
programs built for both Power PC and 68K
chip architectures and is fully integrated with
the Finder and the other application
environments.

http://www.apple.com/developer/
http://www.apple.com/developer/

G L O S S A R Y

114
 Apple Computer, Inc. September 2002

Darwin Another name for the Mac OS X
core operating system. The Darwin kernel is
equivalent to the Mac OS X kernel plus the
BSD libraries and commands essential to the
BSD Commands environment. Darwin is
Open Source technology.

dmg A Mac OS X disk image file.

dock An area on the edge of the screen that
holds applications, documents, minimized
windows, folders, storage devices, and links
to websites. It is customizable by users to
allow them to easily organize and quickly
access their most used resources.

Finder The system application that acts as
the primary interface for file-system
interaction.

HFS (Hierarchical File System) The Mac
OS Standard file-system format, used to
represent a collection of files as a hierarchy of
directories (folders), each of which may
contain either files or folders themselves.
HFS is a two-fork volume format.

HFS+ The Mac OS Extended file-system
format. This file-system format was
introduced as part of Mac OS 8.1, adding
support for filenames longer than 31
characters, Unicode representation of file and
directory names, and efficient operation on
very large disks. HFS+ is a multiple-fork
volume format.

JDirect A Mac OS–specific technology that
allows you to access native code without
building Java Native Interface libraries.

Mach The lowest level of the Mac OS X
kernel. Mach provides such basic services
and abstractions as threads, tasks, ports,
interprocess communication (IPC),
scheduling, physical and virtual address
space management, virtual memory, and
timers.

Mach-O The executable format of Mach
object files. This is the default executable
format in Mac OS X.

MRJAppBuilder An application used to
bundle cross platform Java applications into
native Mac OS X Java applications. It is
included with the Mac OS X Developer Tools
in /Developer/Applications.

.pkg file A Mac OS X Installer file. May be
grouped together into a meta package
(.mpkg).

Objective-C An object-oriented
programming language based on standard C
and a runtime system that implements the
dynamic functions of the language.
Objective-C's few extensions to the C
language are mostly based on Smalltalk, one
of the first object-oriented programming
languages. Objective-C is available in the
Cocoa application environment.

OpenGL An industry-wide standard for
developing portable 3D graphics
applications.

plist See property list.

Project Builder Apple’s graphical
integrated development environment. It is
available free with the Mac OS X Developer
Tools package.

G L O S S A R Y

115
 Apple Computer, Inc. September 2002

property list A structured, textual
representation of data that uses the
Extensible Markup Language (XML) as the
structuring medium. Elements of a property
list represent data of certain types, such as
arrays, dictionaries, and strings.

Quartz Quartz is a powerful graphics
system that delivers a rich imaging model,
on-the-fly rendering, anti-aliasing, and
compositing of PostScript graphics. Quartz
also implements the windowing system for
Mac OS X and provides low-level services
such as event handling and cursor
management. It also offers facilities for
rendering and printing that use PDF as an
internal model for graphics representation.

QuickTime QuickTime is a powerful,
cross-platform, multimedia technology for
manipulating, enhancing, and storing video,
sound, animation, graphics, text, music, and
even 360-degree virtual reality. It also allows
you to stream digital video where the data
stream can be either live or stored.

window menu A menu that contains
commands for managing document
windows. The menu lists an application's
open document windows, including
minimized windows, in the order in which
they were opened.

XNU The Mac OS X kernel. It combines
functionality of Mach and BSD as well as the
driver model, the I/O Kit.

G L O S S A R Y

116
 Apple Computer, Inc. September 2002

117
© Apple Computer, Inc. September 2002

Index

A

anti-aliased text and graphics 20
Apple Developer Connection (ADC)

memberships 14
Applet Launcher 47–49
applets

displaying in native applications 76–77
output location 39
user settings 40

application bundles
contents 30
description of 28–30
displaying file choosing dialogs of 56–60
documentation 28
settings for Java applications 31–33

application menu 70–72
Aqua

default look and feel for Swing applications
51–52

documentation 52
AWT file choosing dialogs 56–57

B

browsers, displaying your applets in 37–38
buffered windows 20
bugs, filing and tracking 14

C

Carbon
as an operating system API 15
calling the Human Interface Toolbox from Java

74–75

event handling 63
implementation of Swing and AWT

components 63
versus Cocoa event models 77

Cocoa
as an operating system API 16

Cocoa Java 77
com.apple.hwaccel system property 110
com.apple.macos.use-file-dialog-packages

system property 58, 110
com.apple.macos.useScreenMenuBar system

property 110
com.apple.macos.useSmallTabs system

property 111
com.apple.macosx.AntiAliasedGraphicsOn

system property 111
com.apple.macosx.AntiAliasedTextOn system

property 111
com.apple.mrj.application.apple.menu.abou

t.name system property 111
com.apple.mrj.application.classpath 107
com.apple.mrj.application.growbox.intrude

s 111
com.apple.mrj.application.live-resize 111
com.apple.mrj.application.parameters

system property 108
com.apple.mrj.application.vm.options

system property 108
com.apple.mrj.application.workingdirector

y system property 108
com.apple.MRJAboutHandler 71
com.apple.MRJOpenApplicationHandler 72
com.apple.MRJOpenDocumentHandler 72
com.apple.MRJPrefsHandler 71
com.apple.MRJQuitHandler 71
components

mixing AWT and Swing 52
placement with layout managers 53
setting the color of 53–54

I N D E X

118
© Apple Computer, Inc. September 2002

setting the size of 53
CoreAudio, access from Java 73

D

double-buffered windows 20

E

embedding Java in native code 76–77
extensions, where to install 25

F

file choosing dialogs 56–57

G

graphics
hardware acceleration 20
predictable behavior 52

H

hardware graphics acceleration 65–68
about 20
using function keys to control 66–67

HTML tags for displaying applets 37–38

I

icons for command line applications, specifying
68

installation location of Java 18

J, K

Java 2 Enterprise Edition (J2EE)
development environments 48
support for 18

Java 2 Micro Edition (J2ME) development on Mac
OS X 49

Java 2D 19–20
Java Applet.plugin 76–77
Java Archives (JARs)

caching 38–39
distibuting your applications as 27–28
signed 39
where to install 25

Java Console 39
Java CoreAudio 73
Java Database Connectivity (JDBC) support in

Mac OS X 18
Java Embedding Framework, use Java

Applet.plugin 76–77
Java Naming and Directory Interface (JNDI)

support in Mac OS X 18
Java Native Interface (JNI) 22–24

building libraries 23–24
naming libraries 22

Java Network Launching Protocol & API (JNLP)
implementation differences from other

platforms 35
support in Mac OS X 34

Java Plugin 36–38
user settings 40

Java Sound 19
Java Virtual Machine (JVM)

description and features 20–21
installation location 18
non-standard options 21–22

Java Web Start 34–35
differences from other platforms 35

java.awt.event.InputEvent.isMetaDown()
64

java.awt.FileDialog 56–57, 58
java.awt.PopupMenu 62
java.version property 106
Java2D 19
JAVAHOME environment variable 25

I N D E X

119
© Apple Computer, Inc. September 2002

javax.swing.JFileChooser 56–57
javax.swing.JScrollPane, using to achieve native

look and feel 55–56
JDesktopPane use 54–55
JDirect 74–75

access to bundles 75
debugging 75

L

line.separator property 106
localizing Java applications 72

M

Mac OS X
application bundles See application bundles
architecture of 16
Java system properties 105–111

manifest file, importance of including main class
in 27

menu bar 69–72
adding the Window menu 70
application menu 70–72
displaying JFrame menus in 69–72

menus 60–63
Apple guidelines for 61
contextual 62–63
icons in 62
setting mnemonics 61
shortcuts in 60–61

MRJ handlers 70–72
mrj.version property 106
MRJApp.properties, differences from Info.plist

33
MRJAppBuilder

making a simple Mac OS X application with
95–98

setting system properties with 100–104
tutorial 95–104

multiple document interface (MDI) use 54–55

N

names for command line applications, displaying
in the Dock 68

O

os.name property 106
os.version property 106

P

performance profiling tools 21
PopupMenus 62
preferences, where to install 26
Project Builder

building a simple project 81–82
building applets in 93–94
contents of a project 79–81
importing your Java files into 83–88
specifying system properties in 88–93
tutorial 79–94

property lists
example of 31–32
modifying in Project Builder 34, 88–93
setting in MRJAppBuilder 34, 100–103

Q, R

Quartz 19
QuickTime for Java 73

S

setMnemonics() 62
sound input 19
speech frameworks, Java access to 73
spelling frameworks, Java access to 73

I N D E X

120
© Apple Computer, Inc. September 2002

stack trace, displaying a 43
Swing file choosing dialogs 56–57
system properties 105–111

useful in Mac OS X applications 107–111
virtual machine 105–106

T, U

tutorials
for people new to Java 11
MRJAppBuilder 95–104
Project Builder 79–94

V

video card designation strings 67
VMSee Java Virtual Machine

W

Window menu 70
windows and dialogs 54–60

X, Y, Z

-Xdock:name flag 22
-Xms flag 22
-Xmx flag 22
-XX:+PrintJavaStackAtFatalState flag 22
-XX:+UseTLE flag 22

	Java Development on Mac OS X
	Contents
	Figures, Listings, and Tables
	About This Book
	How to Use This Book
	Other Resources
	Filing and Tracking Bugs

	How Java Is Implemented in Mac OS X
	Java Integration in the Operating System
	What Is Included
	Java 2D Graphics Implementation
	The Virtual Machine
	Performance Profiling Tools
	Nonstandard Virtual Machine Options
	The Java Native Interface

	Environmental Differences
	Finding
	Where to Put Extensions
	Where to Put Preferences
	Setting the Classpath
	Java Output

	Deployment Options
	Distributing You Application as a JAR File
	Mac OS X Java Applications
	Application Bundles
	Property List Attributes for Java Applications
	Setting the Java Runtime Properties for an Application Bundle
	Setting Runtime Properties in Project Builder
	Setting Runtime Properties in MRJAppBuilder

	Java Web Start
	Applets
	Accessing Mac OS X–Specific Properties From Applets
	Java Applet Plug-in
	Taking Advantage of the Java Applet Plug-in with HTML
	Benefits of Using the Java Applet Plug-in

	The Development Environment
	Java Development Tools
	Standard JDK Tools
	Displaying a Java Stack Trace

	Other Command-Line Tools
	GUI-Based Tools
	Project Builder
	MRJAppBuilder
	Applet Launcher
	Other Tools

	Where to Get the Tools

	Cross-Platform Practices for Great Native Behavior
	The Aqua Look and Feel
	Placing and Painting Components
	Layout Managers
	Sizing Components
	Coloring Components

	Windows and Dialogs
	Use of the Multiple Document Interface
	Windows With Scroll Bars (Using JScrollPanes)
	File Choosing Dialogs
	Dealing With Bundles in Mac OS X

	Menus
	Menu Shortcuts
	Menu Item Icons
	Contextual Menus

	Event Handling

	Using Native Features of Mac OS X in Java Applications
	Modifying the Default Settings for Hardware Graphics Acceleration
	Advanced Options
	Video Cards Designation Strings

	Specifying a Name and Icon for Command-Line Applications
	Using the Macintosh Menu Bar
	The Window Menu
	The Application Menu

	More MRJ Handlers
	Localizing Packaged Java applications on Mac OS X
	QuickTime for Java
	Java Core Audio Packages
	Java Spelling and Speech Frameworks
	JDirect
	Human Interface Toolbox Synchronization
	Debugging Features for JDirect
	MethodClosureUPP Not Supported
	JDirect Access to Bundles

	Embedding Applets in Native Applications
	Cocoa Java

	Project Builder Tutorial
	Building a Java Application With Project Builder
	<$startrange>Project Builder:contents of a project
	<$startrange>Project Builder:building a simple project
	<$startrange>Project Builder:importing your Java files into
	<$startrange>property lists:modifying in Project Builder

	<$startrange>Project Builder:building applets in

	MRJAppBuilder Tutorial
	Building a Basic Application
	Building a More Robust Application
	Making Your Application More Mac-like
	Java Properties Pane
	Mac OS X Pane

	Mac OS X Java System Properties
	Java Virtual Machine Properties
	Mac OS X Application Properties
	Mac OS X–Specific Properties

	Glossary
	Index

