

I n s i d e M a c O S X

Web Services

October 2002

 Apple Computer, Inc.
© 1998-2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, and
Macintosh are trademarks of
Apple Computer, Inc., registered in
the United States and other countries.
Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

3

 Apple Computer, Inc. October 2002

Contents

Figures, Listings, and Tables

7

Chapter 1

Introduction

9

Defining Web Services 9
XML-RPC 10
SOAP 11
WSDL 11

Web Service Invocations 12
Section 5 Encoding 13

The State of XML Web Services 13
XML-RPC vs. SOAP 14

XML-RPC Specification 14
SOAP 1.1 W3C Note 15
WSDL Specification 15
WSDL Schema 15
Developer Resources 16

Chapter 2

Tasks

17

Web Services Toolkits 17
Web Services Support in Mac OS X (10.1 or later) 18
Canonical Example: XML-RPC over Apple Event 18

Sending a Message 19
Getting a Response 19

Using Apple Events to Target a Website 20
Create the Parameter List 20
Create the Direct Object for an XML-RPC Call 21
Create the Event 21
Send the Event 22

4

 Apple Computer, Inc. October 2002

C O N T E N T S

Using Web Services Core in Mac OS X version 10.2 23
Low-Level Feature Set 24
WSMethodInvocationRef 24
Creating the WSMethodInvocationRef Object 25

WSMethodInvocation—Setting Parameters 25
Building the Dictionary and Parameter Order Array 26
WSMethodInvocation—Result Dictionary 27
WSMethodInvocation—Asynchronous 27
WSDL Support 28

Chapter 3

Web Services Reference

29

Web Services Functions 29
Method Invocation Functions 30

WSMethodInvocationCreate 30
WSMethodInvocationCreateFromSerialization 31
WSMethodInvocationCopySerialization 32
WSMethodInvocationSetParameters 33
WSMethodInvocationCopyParameters 33
WSMethodInvocationSetProperty 34
WSMethodInvocationCopyProperty 35
WSMethodInvocationInvoke 36

Callback Functions 37
WSMethodInvocationCallBackProcPtr 37
WSMethodInvocationSetCallBack 38
WSMethodInvocationScheduleWithRunLoop 38
WSMethodInvocationUnscheduleFromRunLoop 39
WSMethodResultIsFault 40

Serialization and Deserialization Override Support 41
WSMethodInvocationSerializationProcPtr 41
WSMethodInvocationAddSerializationOverride 42
WSMethodInvocationDeserializationProcPtr 43
WSMethodInvocationAddDeserializationOverride 43

Other Functions 44
WSGetWSTypeIDFromCFType 45
WSGetCFTypeIDFromWSTypeID 45
WSMethodInvocationGetTypeID 46

C O N T E N T S

5

 Apple Computer, Inc. October 2002

Web Services Data Types 47
WSClientContext 47
WSMethodInvocationRef 47

Web Services Constants 48
WSTypeID 51

Web Services Result Codes 52

Appendix A

Document Revision History

53

6

 Apple Computer, Inc. October 2002

C O N T E N T S

7

 Apple Computer, Inc. October 2002

Figures, Listings, and Tables

Chapter 1

Introduction

9

Figure 1-1 XML-RPC and SOAP encodings on top of XML on top of
HTTP 13

Chapter 2

Tasks

17

Figure 2-1 A sequence of actions used to target a website using Apple
events 22

Figure 2-2 WS Core alongside CoreServices in Mac OS X version 10.2 24
Listing 2-1 An XML structure specifying a method name and parameter 19
Listing 2-2 An XML structure with the return value specified 19

Appendix A

Document Revision History

53

Table A-1 Web services document revision history 53

8

 Apple Computer, Inc. October 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S

9

 Apple Computer, Inc. October 2002

C H A P T E R 1

1 Introduction

Welcome to Web services frameworks in Mac OS X version 10.2.

This and subsequent chapters in this book introduce you to Web services available
on Mac OS X. Some of the important concepts and terminology behind this newly
emerging technology are discussed in this chapter.

The toolkits and frameworks, including Apple’s

WebServicesCore.framework

, a
client-side framework for accessing Web services from Mac OS X which is new in
Mac OS X version 10.2, are discussed in Chapter 2, “Tasks” (page 17). Some of the
tools and techniques for writing Web services glue and adding it to Cocoa, Carbon
and AppleScript applications are also discussed in Chapter 2.

Finally, Chapter 3, “Web Services Reference” (page 29), provides a reference of
APIs, constants, and types that are new in the Web services framework.

Defining Web Services

Web services can be defined broadly as a software service that you can access over
the Internet to get a particular result, using standard Web protocols such as XML
and HTTP. You use Web services to perform an action on what is defined as an

endpoint

, usually an HTTP server, in order to get the desired results. Web services
are the basis of distributed computing on the Internet and offer many opportunities
for Web developers.

10

 Apple Computer, Inc. October 2002

C H A P T E R 1

Introduction

Web services are

heterogeneous

, in that clients and servers can be running on
different architectures and platforms but are still able to speak the same the lingua
franca, which is XML. This is one of the major advantages of the Web services
architecture.

Some examples of Web services include

�

Commercial, fee-based Web services, where in exchange for specific
information, the customer pays a prescribed fee. If you have a business that
needs some piece of information, for example, a developer could put up a Web
service that provides that information. As a customer, you access the
information through a Web services toolkit, and are billed for it.

�

Corporate intranets, where an Information Services department within the
company publishes a Web service and expects their tools to work with it.

�

Non-commercial Web services that are publicly accessible. Many of these are
public endpoints that companies and Web developers provide for free. For
example, Barnes & Noble has a Web service on the Internet, where you give it an
ISBN number and it gives you the price of the book. There also are many Web
services that provide people with stock quotes, the correct temperature in a zip
code, sports scores, or road conditions, as well as other services.

XML-RPC

A remote procedure call (RPC) is a request to a server application at another
location to perform operations and return information. XML-RPC is a simple
protocol that allows software running in different environments to make remote
procedure calls over the Internet. XML-RPC uses two industry standards: XML
(extensible markup language) for encoding messages, and HTTP (hypertext
transfer protocol) for transporting them. A properly formatted XML-RPC message
is an HTTP POST request whose body is in XML. The specified remote server
executes the requested call and returns any requested data in XML format.

XML-RPC recognizes procedure parameters by position. Parameters and return
values can be simple types such as numbers, strings, and dates, or more complex
types such as structures and arrays. To learn more about XML-RPC messages, see
the XML-RPC specification at http://www.xmlrpc.com/spec.

http://www.xmlrpc.com/spec

C H A P T E R 1

Introduction

11

 Apple Computer, Inc. October 2002

The specification defines an XML-RPC message as an HTTP-POST request. The
body of the request is in XML. A procedure executes on the server and the value it
returns is also formatted in XML. Procedure parameters can be scalars, numbers,
strings, dates, etc.; and can also be complex record and list structures.

SOAP

SOAP (Simple Object Access Protocol) is an RPC protocol designed for a distributed
environment, where a server may consist of a hierarchy of objects whose methods
can be called over the Internet. A goal of SOAP is to establish a standard protocol
that will serve both web service providers and service users. As with other remote
procedure call protocols, SOAP uses XML to encode messages and HTTP to
transport them. A SOAP request contains a header and an envelope; the envelope
in turn contains the body of the request.

One key difference between the SOAP and XML-RPC protocols is that with SOAP,
parameters are notational (a request must encode the method parameter names
within its XML), rather than positional (recognized by position). To learn more
about SOAP messages, see the SOAP specification at http://www.w3.org/TR/.

Remote procedure calls provide a powerful tool for accessing services over the
Internet. For example, there are already a variety of web-based servers that can
check spelling, translate text between languages, provide stock prices, supply
weather and traffic information, and more. You can find some available services at
sites such as XMethods at http://www.xmethods.net/. There you can also find
information you’ll need to make remote procedure calls to these services.

Starting with Mac OS X version 10.1, AppleScript and the Apple Event Manager
provide XML-RPC and SOAP support such that:

�

Scripters can make XML-RPC calls and SOAP requests from scripts.

�

Developers can make XML-RPC calls and SOAP requests from applications or
other code by sending Apple events.

WSDL

The Web Services Description Language (WSDL) is an XML-based language used
to describe the services a business offers and to provide a way for individuals and
other businesses to access those services electronically. WSDL is the cornerstone of

http://www.w3.org/TR/
http://www.xmethods.net/

12

 Apple Computer, Inc. October 2002

C H A P T E R 1

Introduction

the Universal Description, Discovery, and Integration (UDDI) initiative
spearheaded by Microsoft, IBM, and Ariba. UDDI is an XML-based registry for
businesses worldwide, which enables businesses to list themselves and their
services on the Internet. WSDL is the language used to do this.

WSDL is derived from Microsoft’s Simple Object Access Protocol (SOAP) and IBM’s
Network Accessible Service Specification Language (NASSL). WSDL replaces both
NASSL and SOAP as the means of expressing business services in the UDDI
registry.

Web Service Invocations

XML-RPC and SOAP are formats for Web service invocations. These are mutually
exclusive, just different ways of packaging up the data that you are sending to the
Web service. Both are built on top of XML, which is the standard for presenting
information in a way that is reliable, guaranteed to understand the message or not,
and also very easy for humans to read. These are built on top of HTTP; Web services
are typically called or made with HTTP-POST.

In the diagram in Figure 1-1, SOAP sits on top of XML schemas, which gives you a
very rich type system.

XML riding on top of HTTP is typically what we think of as a Web service.

C H A P T E R 1

Introduction

13

 Apple Computer, Inc. October 2002

Figure 1-1

XML-RPC and SOAP encodings on top of XML on top of HTTP

Section 5 Encoding

In this type of encoding, the XML that you’re sending is strongly typed on the XML
tag, which specifies, for example, that this element is an integer, or this element is a
string. XML schemas let you build up complex types.

The State of XML Web Services

In the Userland XML-RPC specification, XML-RPC is used to implement a simple
RPC mechanism on top of XML on top of an HTTP post. This specification is
complete; you can implement it today, and is guaranteed to work tomorrow.

SOAP, however, is an evolving standard. The syntax is a little different from
XML-RPC. As SOAP evolves, more and more extensions have been added onto it.
SOAP 1.1 is a w3c recommendation, which means that it is essentially done. SOAP
1.2. is still a moving target, and its extensions are not yet final. Much of the work on
these extensions has been spearheaded by Microsoft and IBM.

In addition, SOAP includes a header, which can contain additional information for
SOAP extensions; these extensions can be anything that a service vendor might
want to specify.

SOAP

XML
Schemas

XML

HTTP Transport

XML-RPC

14

 Apple Computer, Inc. October 2002

C H A P T E R 1

Introduction

XML-RPC vs. SOAP

SOAP and XML-RPC are related protocols in that they both attempt to homogenize
the passing of parameters to Web services. SOAP is currently a W3C
recommendation and is actively being enhanced and developed by Microsoft and
other companies. The Microsoft .NET initiative is largely driven by being able to
access Web services transparently through SOAP messsages.

XML-RPC is a final specification which is less verbose and easier to implement than
SOAP. Both SOAP and XML-RPC work by turning a set of parameters (scalars,
strings, dates, arrays, records, and binary data) into XML for transmission.
XML-RPC is defined as operating over an HTTP connection, while SOAP describes
the envelope format for an RPC request which may be sent over HTTP, SMTP or
some other protocol.

SOAP passes parameters by name and XML-RPC passes parameters by position.
This is relevant because a routine that depends on the order of parameters in
XML-RPC must be called carefully to ensure correct results.

SOAP allows for user record types by extending the XML document using XML
Schemas. XML-RPC only allows for the base types defined in the specification. (In
reality, any type can be defined using those primitives.)

Both SOAP and XML-RPC support passing binary data in an XML document using
Base-64 encoding. XML-RPC has a major flaw, however, in that it defines string
parameters as being ASCII text. Some XML-RPC servers will enforce this, forcing
the user to pass internationalized text as Base-64 encoded data.

XML-RPC Specification

The complete specification is available at

 http://www.xmlrpc.com/spec

http://www.xmlrpc.com/spec

C H A P T E R 1

Introduction

15

 Apple Computer, Inc. October 2002

SOAP 1.1 W3C Note

SOAP is transport-agnostic, meaning that it is an envelope format but not the
transmission. It has recommendations if you send it over HTTP, such as additional
headers that you might add, or how it might deal with the server in terms of what
error codes it might return. But the SOAP message format itself is the same.

The specification is available at

http://www.w3.org/TR/SOAP/

The schema is available at

http://schemas.xmlsoap.org/soap/envelope

http://schemas.xmlsoap.org/soap/encoding

WSDL Specification

WSDL defines an XML-based grammar for describing network services as a set of
endpoints that accept messages containing either document-oriented or
procedure-oriented information. The WSDL specification index page links to the
WSDL 1.1 specification, related schema, and an overview of the specification.

The specification is available at

 http://www.w3.org/TR/wsdl

WSDL Schema

The WSDL Framework is available at

http://schemas.xmlsoap.org/wsdl/

The WSDL SOAP binding is available at

 http://schemas.xmlsoap.org/wsdl/soap

The WSDL HTTP GET & POST binding is available at

http://schemas.xmlsoap.org/wsdl/http/

http://www.w3.org/TR/SOAP/
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding
http://www.w3.org/TR/wsdl
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap
http://schemas.xmlsoap.org/wsdl/http/

16

 Apple Computer, Inc. October 2002

C H A P T E R 1

Introduction

The WSDL MIME binding is available at

http://schemas.xmlsoap.org/wsdl/mime/

Developer Resources

Apple provides a number of resources available to assist developers. These include

�

The Apple Developer Networking Documentation at http://
developer.apple.com/techpubs/macosx/Networking/

�

Apple Sample Code which is available at http://developer.apple.com/
samplecode/

http://schemas.xmlsoap.org/wsdl/mime/
http://developer.apple.com/techpubs/macosx/Networking/
http://developer.apple.com/samplecode/

17

 Apple Computer, Inc. October 2002

C H A P T E R 2

2 Tasks

This chapter discusses how you can take advantage of Web services that are
available in Mac OS X and introduces a new framework that supports
WebServicesCore inside of Core Services framework.

Web Services Toolkits

There are currently more than 50 different implementations of XML-RPC as well as
more than 80 implementations of SOAP available for developers. Many of these
implementations are provided in toolkits for developers. These XML-RPC and
SOAP toolkits typically work by binding a language runtime to a serialization
format. The required toolkit would match your object model, in most cases.

If, for example, you have an application written in Java, you would likely use one
of the established Java SOAP or XML-RPC implementations because those toolkits
will match your object model. Thus, the most useful Web services toolkit is one that
best matches your runtime environment and your application framework.

18

 Apple Computer, Inc. October 2002

C H A P T E R 2

Tasks

Web Services Support in Mac OS X (10.1 or later)

SOAP 1.1 and XML-RPC support are provided in Mac OS X (10.1) via Apple
events––the same Apple events that you can use, for example, to script the Finder.
Both XML-RPC and SOAP 1.1 are, in effect, “baked into” the Apple Event Manager.
Because this support is right there in the Event Manager, you also get AppleScript
support “for free.”

This is a very popular high-level way for developers on the Macintosh platform to
access corporate and public Web services. One distinct advantage is that you don’t
have to go on the Internet and download a toolkit and then make sure that your
customers have it.

An Apple event is an interprocess communication method. The support for Web
services works by “hijacking” an addressing mode––

typeApplicationURL

––for an
Apple event. In Mac OS X (10.1 or later), using a remote Apple event you can send
a binary method to another application on another Mac OS X computer, and for
addressing modes which are HTTP, these methods are treated as a Web service.

This is accomplished without any API changes to the Apple Event Manager, and
just by enabling some additional data types that are hinted to the Apple Event
Manager that the method to be called would use the specified SOAP framework.

Canonical Example: XML-RPC over Apple Event

The canonical XML-RPC example, with both message and response, is quite simple:

1. You call a method,

example.getStateName

, on the server <http://
betty.userland.com:80/RPC2>.

2. When you go to send this message, you open an HTTP connection.

3. Then do an HTTP post to that site with an XML document. The XML document
takes a single integer with a parameter and returns a string.

C H A P T E R 2

Tasks

19

 Apple Computer, Inc. October 2002

Sending a Message

The XML structure shown in Listing 2-1 has both a method name
<examples.getStateName> and a parameter.

The element tag is

<i4>

, which indicates that it is typed as a long integer.

The server comes back and specifies that the return value from that method is the
string South Dakota. The server is returning an array of 50 states and element 41 in
the array in no particular order.

Listing 2-1

An XML structure specifying a method name and parameter

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>

<methodName>examples.getStateName</methodName>
<params>

<param>
<value>

<i4>41</i4>
</value>

</param>
</params>
</methodCall>

Getting a Response

Listing 2-2 An XML structure with the return value specified

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value>South Dakota</value>
</param>

</params>
</methodResponse>

20
 Apple Computer, Inc. October 2002

C H A P T E R 2

Tasks

Using Apple Events to Target a Website

The process of using Apple events to target a website is straightforward, as
described by the code example in this section. You would simply follow these steps:

1. Create the parameter list for the method calls. In this example, you create a
parameter list with a single integer. Then put the value 41 in the parameter list.

2. Create the direct object. In the Apple Event implementation of Web services, the
direct object contains both the method name and the parameter list, as it is
handed off to the subsystem that deals with the RPC calls. The direct object for
a XML-RPC and a SOAP Web service call contains two fields: the
keyRPCMethodParam field and the keyRPCMethodName field.

3. Create the event that you want to send. Just like in the normal Apple Event
Manager, you create the target event, in this case an application URL type char,
and then you provide the location that you are going to post the event to. You
create the event with a special event class ID, kAERPCClass.

4. Send the event and deal with the reply. Apple events can be sent synchronously
or asynchronously. If it is an asynchronous reply, you will see the reply as an
Apple event.

In this example, you send the event, and then wait for the reply. This opens up the
connection to the remote site, sends the event, gets the reply, and turns it back into
an Apple event descriptor. You can then pull out of the reply the direct object, which
is a string.

Create the Parameter List
You create the parameter list, which is a single integer.

AEDesc paramList;
AECreateList(NULL, 0, true, ¶mList);
SInt32 ixState = 41;
AEPutPtr(¶mList, 0, typeSInt32, &ixState, sizeof(ixState));

C H A P T E R 2

Tasks

21
 Apple Computer, Inc. October 2002

Create the Direct Object for an XML-RPC Call
In this case, the direct object is a record.

AERecord directObject;
AECreateList(NULL, 0, true, &directObject);

The object has two fields:

AEPutParamDesc(&directObject, keyRPCMethodParam, ¶mList)
AEPutParamPtr(&directObject, keyRPCMethodName, typeChar, ?
“examples.getStateName”, strlen(…))

You put the parameter list into the direct object. Note that this parameter list is a list
of a single element.

AEList paramList;
AECreateList(NULL, 0, false, ¶mList);
SInt32 ixState = 41;
AEPutPtr(¶mList, 0, typeSInt32, &ixState, sizeof(ixState));
AEPutParamDesc(&directObject, keyRPCMethodParam, ¶mList);
AEDIsposeDesc(¶mList);

You put the method name to call in the direct object.

const char* methodName = "examples.getStateName";
AEPutParamPtr(&directObject, kRPCMethodName, typeChar, methodName,
strlen(methodName));

Create the Event
You describe the address (endpoint).

AEDesc addr;
AECreateDesc(typeApplicationURL, "http://betty.userland.com/RPC2",

strlen(…), &addr)

You build the event.

AEDesc event;
AECreateAppleEvent(kAERPCClass, kAEXMLRPCScheme, &addr, …, &event);
AEPutParamDesc(&event, keyDirectObject, &directObject)

22
 Apple Computer, Inc. October 2002

C H A P T E R 2

Tasks

Send the Event
You send the event and then deal with the reply.

AEDesc reply;
AESend(&event, &reply, kAEWaitReply, …, …)

AEGetParamPtr(&reply, keyDirectObject, typeChar,
buffer, sizeof(buffer), …, &actualSize)

printf(“State: %.*s\n”, actualSize, buffer);

The method reply is contained within the direct object of the Apple event reply.

This sequence of actions is illustrated in Figure 2-1.

Figure 2-1 A sequence of actions used to target a website using Apple events

kAERPCClass

kAECMLRPCSchema

"examples.getStateName"

"41"

"http://betty..."

Method Name

Parameters

Event class

Direct Object

Event ID

Target Address

C H A P T E R 2

Tasks

23
 Apple Computer, Inc. October 2002

Using Web Services Core in Mac OS X version 10.2

Although the Apple event method described in the above example is useful and
easy to implement, it may describe a process that is too high-level in the protocol
stack, in the library chain of the system. Some developers may want a more
advanced framework with greater, low-level functionality. Toward that end, Mac
OS X version 10.2 introduces a new framework that implements WebServicesCore
inside of Core Services.

This is a low-level framework that sits alongside CFNetwork, Core Foundation and
CarbonCore, as illustrated in Figure 2-2. This is a subframework, residing under the
CoreServices umbrella, that lets you access the basic runtime model for the Mac OS
X system. It is available to all applications, plugins, tools, and daemons.

The framework has no dependency on the Window Server or login window. You
don’t have to be a console user, so you can use it from any CGI application. It is fully
integrated with the Mac OS X system, sitting inside Core Services, and leverages
CFXMLParser and CFNetwork. The framework is thread-safe and based on the run
loop.

It encourages you to asynchronously issue invocation requests on the run loop and
receive a reply on your bundle. Because it is CFType-based, you have to create
CFType objects for your strings, records, dictionaries and CF arrays. If you’re an
Objective-C programmer, you get “toll-free” bridging with Objective-C types. It’s
also a simple procedural API.

Figure 2-2 shows an illustration of WS Core sitting alongside Core Services in
Mac OS X version 10.2.

24
 Apple Computer, Inc. October 2002

C H A P T E R 2

Tasks

Figure 2-2 WS Core alongside CoreServices in Mac OS X version 10.2

Low-Level Feature Set
The WebServicesCore API, which is described in Chapter 3, “Web Services
Reference” (page 29), is protocol-independent––in other words, protocol-agnostic.
To SOAP or XML-RPC, it looks the same. The difference is in what properties you
set, using the WSMethodInvocationRef (page 47) object. You can have synchronous
“one-shot” operation, or asynchronous operations with callbacks.

The framework is based on advances in CFNetwork, so as CFNetwork improves,
WSCore will also improve. You get advanced networking support for firewalls and
proxies. There is full access to the underlying CFHTTPMessage.

It is conceptually similar to scheduling in CFStream. This model is a little simpler,
in that the synchronous calls give you a single callback with the result of the
invocation.

The framework comes with HTTP / HTTPS support in 1.0. Future versions of will
probably support other transport modes, as well.

WSMethodInvocationRef
The most useful object in the Web services core API is an opaque structure defined
as WSMethodInvocationRef (page 47). This structure is created in the following steps:

1. You call a method inside the framework, giving it an endpoint URL and method
name, and a prototype parameter which specifies the encoding style, that is,
whether it is an XML-RPC or SOAP v1.1 method that you want to send.

Carbon

App Services AE Manager

Core Services WS Core

C H A P T E R 2

Tasks

25
 Apple Computer, Inc. October 2002

2. You then add properties to the invocation reference that can control some of the
serialization rules and transport options, such as the SOAP action or method
namespace.

3. You set the parameters on the invocation as CFTypes. Then you can either
schedule it on a run loop––or call it synchronously. It gives you back a result
dictionary.

Creating the WSMethodInvocationRef Object
You create the WSMethodInvocationRef object by using the method
WSMethodInvocationCreate, which takes the CF URL or NS URL. The method name
is a CFString. The protocol is one of these CFString constants:

� kWSXMLRPCProtocol

� kWSSOAP1999Protocol

The header is Mac OS X version 10.2: WSMethodInvocation.h

WSMethodInvocation—Setting Parameters

Next, you set the parameters on the invocation. The call that you make,
“WSMethodInvocationSetParameters” (page 33), takes the ref on which you are
going to set the parameters. A dictionary containing the name of the parameters and
the values of those parameters, and an array, which is optional for SOAP messages,
specifies the order in which the parameters should be serialized. The array is not
optional for XML-RPC method calls, because XML-RPC is positional––that is, it
needs know the position. Some SOAP methods require that the order be specified
by the service vendor as well. That is why you would want to have the second
parameter of the array.

The CFDictionary contains the name of the parameter and a CFType for the
parameter value, which can be one of the primitive CFTypes or a compound type.
The types that are serialized automatically for you are CFBoolean, CFNumber, CFDate,
CFString, CFData, CFArray, CFDictionary. You can also add meta data keys to a
CFDictionary to specify custom namespaces, when it is serialized for SOAP, and the
parameter order. You can build complex types using CFDictionary.

26
 Apple Computer, Inc. October 2002

C H A P T E R 2

Tasks

The types are serialized using “Section 5 Encoding” (page 13) SOAP encoding. The
type information for custom types is not present in the invocation. If you have
custom types, you have to write your own dictionary marshalling code, at least until
a schema-aware WSDL parser is made available.

Building the Dictionary and Parameter Order Array

The following steps describe how you would build the CFdictionary and parameter
order array.

1. You call CFDictionaryAddValue on a mutable dictionary that you’ve created:

CFDictionaryAddValue(dict, CFSTR(“param1”), CFSTR(“Steve”
CFDictionaryAddValue(dict, CFSTR(“param2”), CFSTR(“John”))
CFArrayAddValue(order, CFSTR(“param1”))
CFArrayAddvalue(order, CFSTR(“param2”))
WSMethodInvocationSetParameters(ref, values, order)

2. Add the parameter names to the parameter name array.

3. Set the parameters onto the ref.

4. Invoke it, with a single call: WSMethodInvocationInvoke.

The result is a CFDictionary, which you must release. This is not the actual method
results. The CFDictionary contains the method results, as well as optional
debugging information from the request, the outgoing and returned XML, the
HTTP headers and HTTP errors, so that if there was a networking transport error,
that information will also be available in that dictionary.

The SOAP headers are returned as kWSSOAPHeaderValues CFArray of CFStringRef.

The faults may be manufactured for networking errors
(kWSNetworkStreamFaultString).

C H A P T E R 2

Tasks

27
 Apple Computer, Inc. October 2002

WSMethodInvocation—Result Dictionary

You make this invocation call and if …

WSMethodResultIsFault(resultDict)
CFTypeRef faultString = CFDictionaryGetValue(result, kWSFaultString)

Also:

kWSFaultCode, kWSFaultExtra

Else, not a fault:

CFTypeRef myResult = CFDictionaryGetValue(?result,
kWSMethodInvocationResult)

The result of this is a CFString.

WSMethodInvocation—Asynchronous

1. Set the client (callback). This includes the info pointer that you want to pass to
your callback, as well as some callbacks for the info pointer to allow it to be
reference counted.

2. Once you’ve set the callback, you can schedule this invocation on one or more
run loops. As those run loops execute, the invocation will pass through its state
machine, which results in getting the data or getting a fault. When it completes,
it will call your callback during that run loop invocation and you can process the
result.

3. Callback invoked from the runloop when the invocation completes.

4. Can be scheduled on multiple runloops to implement thread groups.

28
 Apple Computer, Inc. October 2002

C H A P T E R 2

Tasks

WSDL Support

Currently the first release of Web Services does not include a WDSL API. A tool is
available at /Developer/Tools/WSMakeStubs to generate static stubs. This tool parses
the WSDL and produces templates for C++, Objective-C, and AppleScript. Various
degrees of complexity are available in the generated stubs. The stub adheres to
“Section 5” encoding and simple marshalling.

29
 Apple Computer, Inc. October 2002

C H A P T E R 3

3 Web Services Reference

This chapter discusses the WebServicesCore framework available in Mac OS X
version 10.2. The chapter describes the constants, data types and functions that
comprise the framework.

The programming interface for the WebServicesCore.framework is declared in the
following header file:

Mac OS X (10.2): WSMethodInvocation.h

4

Web Services Functions

The following APIs are provided in the WebServicesCore.framework:

� WSMethodInvocationCreate (page 30).

� WSMethodInvocationCreateFromSerialization (page 31)

� WSMethodInvocationCopySerialization (page 32).

� WSMethodInvocationSetParameters (page 33).

� WSMethodInvocationCopyParameters (page 33).

� WSMethodInvocationSetProperty (page 34).

� WSMethodInvocationCopyProperty (page 35).

� WSMethodInvocationInvoke (page 36).

� WSMethodInvocationCallBackProcPtr (page 37).

30
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

� WSMethodInvocationSetCallBack (page 38).

� WSMethodInvocationScheduleWithRunLoop (page 38).

� WSMethodInvocationUnscheduleFromRunLoop (page 39).

� WSMethodResultIsFault (page 40).

� WSMethodInvocationSerializationProcPtr (page 41).

� WSMethodInvocationAddSerializationOverride (page 42).

� WSMethodInvocationDeserializationProcPtr (page 43).

� WSMethodInvocationAddDeserializationOverride (page 43).

� WSGetWSTypeIDFromCFType (page 45).

� WSGetCFTypeIDFromWSTypeID (page 45).

� WSMethodInvocationGetTypeID (page 46).

� WSMethodInvocationRef (page 47).

Method Invocation Functions
The following is a list of method invocation functions provided in the
WebServicesCore.framework.

WSMethodInvocationCreate

Creates a Web services method invocation object.

WSMethodInvocationRefWSMethodInvocationCreate(
CFURLRef url,
CFStringRef methodName
CFStringRef protocol);

Parameter Descriptions
url

The endpoint of the service.
methodName

The name of the method to be called.

C H A P T E R 3

Web Services Reference

31
 Apple Computer, Inc. October 2002

function result A WSMethodInvocationRef object that can be passed to
WSMethodInvocationInvoke or scheduled with a run loop.

Discussion
This function creates a Web services method invocation object. This object may be
executed synchronously or scheduled on a run loop for asynchronous execution.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodInvocationCreateFromSerialization

Creates a Web services method invocation object from a previously serialized
contract.

WSMethodInvocationRef WSMethodInvocationCreateFromSerialization
(CFDataRef contract);

Parameter Descriptions
contract

The result of a previously serialized WSMethodInvocationRef.

function result A WSMethodInvocationRef object that can be passed to
WSMethodInvocationInvoke or scheduled with a run loop.

Discussion
This function creates a Web services method invocation object from a previously
serialized contract.

Special Considerations
Mac OS X Threading

Thread safe

32
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodInvocationCopySerialization

Creates a serialized version of the method invocation which can be reconstituted at
a later time.

CFDataRef WSMethodInvocationCopySerialization(WSMethodInvocationRef
invocation);

Parameter Descriptions
invocation

The invocation to serialize.

function result A CFDataRef.

Discussion
This function creates a serialized version of the method invocation which can be
reconstituted at a later time.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

C H A P T E R 3

Web Services Reference

33
 Apple Computer, Inc. October 2002

WSMethodInvocationSetParameters

Sets the parameters for a method invocation.

WSMethodInvocationSetParameters(
WSMethodInvocationRef invocation,
CFDictionaryRef parameters,
CFArrayRef parameterOrder);

Parameter Descriptions
invocation

The invocation object.
parameters

A CFDictionaryRef of CFString keys and CFTypeRef values.
parameterOrder

A CFArrayRef of CFString parameter names.

Discussion
This function sets the parameters for a method invocation. The parameterOrder may
be NULL, in which case the order of the parameters is undefined. If it is not NULL
and the parameters dictionary contains more parameters than are specified by the
order, the behavior is undefined. If the parameterOrder specifies more parameters
than are present in the dictionary, the result is undefined.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

WSMethodInvocationCopyParameters

Copies the parameters from the invocation.

CFDictionaryRef WSMethodInvocationCopyParameters(
WSMethodInvocationRef invocation,
CFArrayRef * parameterOrder);

34
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Parameter Descriptions
invocation

The neighborhood that is to be copied.
parameterOrder

A pointer to a CFArray which will will receive the names, in their
specified order, of the input parameter values. This parameter may
be NULL.

Discussion
This function copies the parameters from the invocation. The resulting dictionary
contains the parameter dictionary. The parameterOrder output parameter, if not
NULL, will contain the order used to serialize the parameters.

Special Considerations
Mac OS X Threading

Thread safe

Availability

Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodInvocationSetProperty

Adds “properties” to a method invocation.

void WSMethodInvocationSetProperty(
WSMethodInvocationRef invocation,
CFStringRef propertyName,
CFTypeRef propertyValue);

Parameter Descriptions
invocation

The invocation.
propertyName

A CFStringRef name of the property to modify.
propertyValue

A CFTypeRef containing the new property value

C H A P T E R 3

Web Services Reference

35
 Apple Computer, Inc. October 2002

function result None.

Discussion
This function adds “properties” to a method invocation. These properties can be
user-defined or one of the WebServicesCore declared properties (which may
modify the behavior of the invocation.) All WebServicesCore declared properties
will start with the string "kWS", for example, kWSHTTPFollowsRedirects.

Properties are serialized along with the contract, so you may want to avoid sticking
raw pointers in a CFNumber, for example.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodInvocationCopyProperty

Returns a property from a invocation.

CFTypeRef WSMethodInvocationCopyProperty(
WSMethodInvocationRef invocation,
CFStringRef propertyName) ;

Parameter Descriptions
invocation

The invocation.
propertyName

The name of the property to retrieve.

Discussion
This function returns a property from a invocation. If the result is NULL, the
property doesn’t exist. Because this is a Copy call, you must release the result.

Special Considerations
Mac OS X Threading

36
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodInvocationInvoke

Executes the invocation.

CFDictionaryRef WSMethodInvocationInvoke(WSMethodInvocationRef
invocation) ;

Parameter Descriptions
invocation

The invocation.

function result A CFDictionaryRef containing the result of the execution or a fault,
and optional debug information.

Discussion
This function executes the invocation. If the call was successful, the result will
contain the result of the invocation. If, for some reason, the invocation fails,
including out of memory or invalid parameter errors, then the result will contain a
fault structure. You must release the result when you’re done with it.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

C H A P T E R 3

Web Services Reference

37
 Apple Computer, Inc. October 2002

Callback Functions
The Web services calls described in this section implement the asynchronous
variant of the WSMethodInvocationInvoke (page 36) routine.

The strategy when using these calls is to schedule the invocation on a given run
loop. When the invocation completes, it calls the specified callback with the result
of the execution. The callback is responsible for releasing the result ref.

Your code is responsible for unscheduling the invocation from the run loop,
whether it completes or not. You can re-schedule an invocation after it completes.
When you unschedule with the run loop, the CallBack is not called.

If a network error occurs, the kWSFaultString entry of the result will contain some
textual description of the error, kWSFaultCode will contain kWSNetworkingFault and
kWSFaultExtra will be a dictionary containing two CFNumber values called
kWSStreamErrorDomain and kWSStreamErrorError.

WSMethodInvocationCallBackProcPtr

Prototypes the callback made when an asynchronous invocation completes.

typedef CALLBACK_API(void , WSMethodInvocationCallBackProcPtr
)(WSMethodInvocationRef invocation, void *info, CFDictionaryRef outRef);

Parameter Descriptions
invocation

The invocation just completed.
info

Private callback data.
outRef

A CFDictionaryRef containing the result of the execution or a fault,
and optional debug information.

Discussion
This callback function prototypes the callback made when an asynchronous
invocation completes. This callback is passed a reference to the invocation just
completed, a pointer to private data, and a dictionary that contains the return value
or falut for this invocation. The callback is responsible for releasing the dictionary
when it is no longer used.

38
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

WSMethodInvocationSetCallBack

Sets the callback for an asynchronous method invocation.

extern void
WSMethodInvocationSetCallBack(

WSMethodInvocationRef invocation,
WSMethodInvocationCallBackProcPtr clientCB,
WSClientContext * context);

Parameter Descriptions
invocation

The invocation.
clientCB

A ProcPtr to be called when the invocation completes.
context

A pointer to a WSClientContext. The structure will be copied.

Discussion
This function sets the callback for an asynchronous method invocation. You call this
with a clientCB and context of NULL to clear the invocation callback.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodInvocationScheduleWithRunLoop

Schedules the invocation to execute on the run loop.

extern void
WSMethodInvocationScheduleWithRunLoop(
 WSMethodInvocationRef invocation,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode);

C H A P T E R 3

Web Services Reference

39
 Apple Computer, Inc. October 2002

Parameter Descriptions
invocation

The invocation.
runLoop

The run loop upon which to scheduile the invocation.
runLoopMode

The run loop mode.

Discussion
This function schedules the invocation to execute on the run loop.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodInvocationUnscheduleFromRunLoop

Unschedules the invocation from a given run loop and mode.

extern void
WSMethodInvocationUnscheduleFromRunLoop(
 WSMethodInvocationRef invocation,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode);

Parameter Descriptions
invocation

The invocation.
runLoop

The run loop upon which to scheduile the invocation.
runLoopMode

The run loop mode.

40
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Discussion
This function unschedules the invocation from a given run loop and mode. If the
invocation has not yet completed, its callback will not be called.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSMethodResultIsFault

Returns TRUE if the method invocation result contains a fault.

extern Boolean
WSMethodResultIsFault(CFDictionaryRef methodResult);

Parameter Descriptions
methodResult

 The result ref.
This function returns TRUE if the method invocation result contains a fault.

Discussion
Result interrogation: If the result is a fault, look in the kWSFaultCode, kWSFaultString
and kWSFaultExtra fields of the resulting dictionary. If not a fault,
kWSMethodInvocationResult will contain the result of the execution. If debugging
information was requested, it will be available in the dictionary as well.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

C H A P T E R 3

Web Services Reference

41
 Apple Computer, Inc. October 2002

Non-Carbon CFM: not available

Serialization and Deserialization Override Support
You can add serialization and deserialization callbacks for custom types, or types
not otherwise handled by the framework, as discussed in this section. Note that
these properties are not serialized if the invocation is serialized.

WSMethodInvocationSerializationProcPtr

Prototypes the callback function for a custom serialization procedure.

typedef CALLBACK_API(CFStringRef , WSMethodInvocationSerializationProcPtr
)(WSMethodInvocationRef invocation, CFTypeRef obj, void *info);

Parameter Descriptions
invocation

The invocation currently being serialized.
obj

The CFTypeRef to be serialized.
info

Private callback data.
A CFStringRef containing valid XML. The caller of this callback will
release the string.

Discussion
This function prototypes the callback function for a custom serialization procedure.
This callback is called whenever a type has the given CFTypeID. The callback
should return an XML snippet that will be “understood” by the server as a correct
serialization for a given type. If the callback returns NULL, the default serializer
will be used.

42
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

WSMethodInvocationAddSerializationOverride

Specifies a callback which will be called to produce the XML that represents the
serialization of a given type ref.

extern void
WSMethodInvocationAddSerializationOverride(
 WSMethodInvocationRef invocation,
 CFTypeID objType,
 WSMethodInvocationSerializationProcPtr serializationProc,
 WSClientContext * context);

Parameter Descriptions
invocation

The invocation.
objType

The CFTypeID of the object.
serializationProc

The callback called.
context

A pointer to a WSClientContext. The structure will be copied.

Discussion
This function specifies a callback which will be called to produce the XML that
represents the serialization of a given type ref. See WSDescription.h for a list of
CFTypes for which there currently exist serializers. If your callback returns NULL,
the default serializer will be used.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

C H A P T E R 3

Web Services Reference

43
 Apple Computer, Inc. October 2002

WSMethodInvocationDeserializationProcPtr

Prototypes the callback function for a custom deserializer.

typedef CALLBACK_API(CFTypeRef , WSMethodInvocationDeserializationProcPtr
)(WSMethodInvocationRef invocation, CFXMLTreeRef msgRoot, CFXMLTreeRef
deserializeRoot, void *info);

Parameter Descriptions
invocation

The invocation executing.
msgRoot

The root tree element.
deserializeRoot

The tree element that needs to be deserialized.
info

Private callback data.

function result A CFTypeRef representing the deserialized data, or NULL to allow the
default deserializers to act.

Discussion
This function prototypes the callback function for a custom deserializer. The
callback is passed a reference to the invocation currently being executed, the root of
the response parse tree, the current node being deserialized, and a pointer to private
data. The return result should be a valid CFTypeRef object (which will be released by
the caller) or NULL to allow the default deserializer to act.

WSMethodInvocationAddDeserializationOverride

Specifies a callback to be made when parsing an XML method response.

extern void
WSMethodInvocationAddDeserializationOverride(
 WSMethodInvocationRef invocation,
 CFStringRef typeNamespace,
 CFStringRef typeName,
 WSMethodInvocationDeserializationProcPtr deserializationProc,
 WSClientContext * context);

44
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Parameter Descriptions
invocation

The invocation.
typeNamespace

The fully resolved namespace for a specific type. If NULL, the
default namespace will be used. For example, this field could be:
CFSTR("http://www.w3.org/2001/XMLSchema-instance").

typeName

The non-qualified type name. This parameter must not be NULL.
deserializationProc

A ProcPtr to be called to perform the deserialization.
context

A pointer to a WSClientContext. The structure will be copied.

Discussion
This function specifies a callback to be made when parsing an XML method
response. The callback should return a CFTypeRef containing the deserialized object
value. If the callback returns NULL, the default deserializer will be used.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

Other Functions
The following is a list of other functions and their parameter descriptions.

C H A P T E R 3

Web Services Reference

45
 Apple Computer, Inc. October 2002

WSGetWSTypeIDFromCFType

Returns the WSTypeID associated with CFTypeRef.

extern WSTypeID
WSGetWSTypeIDFromCFType(CFTypeRef ref);

Parameter Descriptions
ref

A CFTypeRef object.
The WSTypeID used in serializing the object. If no WSTypeID matches,
eWSUnknownType is returned.

Discussion
This function returns the WSTypeID associated with CFTypeRef. There is not a
one-to-one mapping between CFTypeID and WSTypesID. Therefore, an actual instance
of a CFType must be passed.

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

WSGetCFTypeIDFromWSTypeID

Returns the CFTypeID that is associated with a given WSTypeID.

extern CFTypeID
WSGetCFTypeIDFromWSTypeID(WSTypeID typeID);

Parameter Descriptions
typeID

A WSTypeID constant.

function result A CFTypeID, or 0 if not found.

46
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Discussion
This function returns the CFTypeID that is associated with a given WSTypeID.
CFTypeIDs are only valid during a particular instance of a process and should not
be used as static values.

typedef CALLBACK_API(void *, WSClientContextRetainCallBackProcPtr)(void *
info);
typedef CALLBACK_API(void , WSClientContextReleaseCallBackProcPtr)(void *
info);
typedef CALLBACK_API(CFStringRef ,
WSClientContextCopyDescriptionCallBackProcPtr)(void * info);

WSMethodInvocationGetTypeID

extern CFTypeID
WSMethodInvocationGetTypeID(void);

Discussion

Special Considerations
Mac OS X Threading

Thread safe

Availability
Mac OS X: in version 10.2 and later in WebServicesCore.framework

CarbonLib: not available

Non-Carbon CFM: not available

C H A P T E R 3

Web Services Reference

47
 Apple Computer, Inc. October 2002

Web Services Data Types

WSClientContext

Several calls in WebServicesCore.h take a callback with an optional context pointer.
The context is copied and the info pointer retained. When the callback is made, the
info pointer is passed to the callback.

struct WSClientContext {
CFIndex version;
void * info;
WSClientContextRetainCallBackProcPtr retain;
WSClientContextReleaseCallBackProcPtr release;
WSClientContextCopyDescriptionCallBackProcPtr copyDescription;

};
typedef struct WSClientContext WSClientContext;

Field Descriptions
version

Set to zero.
info

Info pointer to be passed to the callback
retain

Callback made on the info pointer. This field may be NULL.
release

Callback made on the info pointer. This field may be NULL.
copyDescription

Callback made on the info pointer. This field may be NULL.

WSMethodInvocationRef

A WSMethodInvocationRef represents an object that can be executed to obtain a result
from a Web service. This is a CFType and is therefore reference counted and and
should be managed via CFRetain and CFRelease.

typedef struct OpaqueWSMethodInvocationRef* WSMethodInvocationRef;

48
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Web Services Constants

Internally, WebServicesCore uses the following enumeration when serializing
between CoreFoundation and XML types. Because CFTypes are defined at runtime,
it is not always possible to produce a static mapping to a particular CFTypeRef. This
enumeration and the associated API allows for static determination of the expected
serialization.

Web Service Protocol Types

These constant strings specify the type of Web service method invocation created.
These are passed to WSMethodInvocationCreate (page 30).

extern CFStringRef kWSXMLRPCProtocol;
extern CFStringRef kWSSOAP1999Protocol;
extern CFStringRef kWSSOAP2001Protocol;

Discussion
For more information on these service types, refer:

� XML-RPC: <http://www.xml-rpc.com/spec/>

� SOAP 1.1: <http://www.w3.org/TR/SOAP/>

� SOAP 1.2: <http://www.w3.org/2002/ws/>

Dictionary Entries

Dictionary entry, if the invocation result is not a fault, is always available in method
responses. For SOAP messages, though, it may be more correct to query the result
dictionary for the specific field that you are interested in.

What this really means is that the dictionary returned by the invocation may contain
more than one value, wherein the result data is duplicated several times. If you
don’t know what to ask for to dump the reply, you can ask for this key. If you do
know what you want, you should request that field explicitly.

C H A P T E R 3

Web Services Reference

49
 Apple Computer, Inc. October 2002

You can also specify the name of the reply parameter in the invocation, using
kWSMethodInvocationResultParameterName. This adds an alias for the given name to
the result dictionary, so that kWSMethodInvocationResult will always return the
correct parameter. Note that this will not work for multi-value returns.

extern CFStringRef kWSMethodInvocationResult;

Dictionary entries if the result is a fault:

extern CFStringRef kWSFaultString; /* a CFString */
extern CFStringRef kWSFaultCode; /* a CFNumber */
extern CFStringRef kWSFaultExtra; /* a CFString or CFDictionary, or

 NULL */

If the result is a fault, and if the value of kWSFaultString in the reply dictionary is
kWSNetworkStreamFaultString, then kWSFaultExtra will be a dictionary indicating
the network error and kWSFaultCode is ignored in this case.

Refer to <CoreFoundation/CFStream.h> for details on what the domain and error
numbers mean.

extern CFStringRef kWSNetworkStreamFaultString;
extern CFStringRef kWSStreamErrorMessage; /* A CFString (for debug

 purposes only) */
extern CFStringRef kWSStreamErrorDomain; /* A CFNumberRef */
extern CFStringRef kWSStreamErrorError; /* A CFNumberRef */

Specifying CFHTTPMessageRef as a Property

For HTTP[S] based invocations, you can specify a CFHTTPMessageRef as a property
which will be used instead of creating a new outgoing message. The
CFHTTPMessageRef can contain header, proxy and authentication information. The
body of the message will be ignored and replaced with the outgoing, serialized
invocation.

After the invocation has executed, you can retrieve a copy of the actual
CFHTTPMessageRef, containing the details of the invocation using
kWSHTTPResponseMessage. Attempting to retrieve the response message property
before the invocation completes will result return NULL.

Refer to <CFNetwork/CFHTTPMessage.h> for more information.

50
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

extern CFStringRef kWSHTTPMessage; /* CFHTTPMessageRef */
extern CFStringRef kWSHTTPResponseMessage; /* CFHTTPMessageRef

To avoid having to create an entire CFHTTPMessageRef, these properties are
individually settable. If they are set, they will override any CFHTTPMessageRef
previously specified.

extern CFStringRef kWSHTTPVersion; /* "http/1.1" */
extern CFStringRef kWSHTTPExtraHeaders; /* a CFDictionary of { key (CFString),
val (CFString) } pairs */
extern CFStringRef kWSHTTPProxy; /* CFURfRefL */
extern CFStringRef kWSHTTPFollowsRedirects; /* kCFBooleanFalse */

SOCKS Proxy Support

WSMethodInvocation uses the same flags as CFSocketStream.h in configuring SOCKS
proxy support. You can set the kCFStreamPropertySOCKSProxy property on the
invocation and the value will be applied to the underlying stream. See
CFSocketStream.h for more information and valid keys.

extern CFStringRef kWSDebugOutgoingHeaders; /* kCFBooleanFalse */
extern CFStringRef kWSDebugOutgoingBody; /* kCFBooleanFalse */
extern CFStringRef kWSDebugIncomingHeaders; /* kCFBooleanFalse */
extern CFStringRef kWSDebugIncomingBody; /* kCFBooleanFalse */

Discussion
These debugging flags will populate the WSInvocationResultRef with some
potentially useful debugging output. The property name of the flag is the same as
the the field in the result dictionary.

Extra Properties for SOAP Messages

These apply to the message namespace and format itself. Individual message
elements can be modified using the kWSRecord constants below.

extern CFStringRef kWSSOAPMethodNamespaceURI; /* CFStringRef */
extern CFStringRef kWSSOAPBodyEncodingStyle; /* CFStringRef {

kWSSOAPStyleDoc, kWSSOAPStyleRPC } */
extern CFStringRef kWSSOAPStyleDoc;
extern CFStringRef kWSSOAPStyleRPC;

C H A P T E R 3

Web Services Reference

51
 Apple Computer, Inc. October 2002

For SOAP messages, this is an array of CFStringRefs which contain valid XML
header elements that are sent with the message. These are only applicable to the
header of a SOAP message.

extern CFStringRef kWSSOAPMessageHeaders; /* CFArrayRef */

When serializing a record (dictionary), these keys present in the dictionary can
modify the behavior of the serialization.

extern CFStringRef kWSRecordParameterOrder;/* CFArrayRef of CFStringRef
*/

extern CFStringRef kWSRecordNamespaceURI; /* CFStringRef */
extern CFStringRef kWSRecordType; /* CFStringRef */

Specifies that the result parameter will be found as this name. This forces the
deserializer to alias the named output parameter to kWSMethodInvocationResult

extern CFStringRef kWSMethodInvocationResultParameterName;

Specifies a timeout (as CFNumber) which specifies in seconds the amount of time to
wait for the invocation to complete. If the invocation times out before the server
results are returned, a fault will be returned with the error code errWSTimeoutError.

extern CFStringRef kWSMethodInvocationTimeoutValue;

WSTypeID

enum WSTypeID {
eWSUnknownType = 0,
eWSNullType = 1,
eWSBooleanType = 2,
eWSIntegerType = 3,
eWSDoubleType = 4,
eWSStringType = 5,
eWSDateType = 6,
eWSDataType = 7,
eWSArrayType = 8,
eWSDictionaryType = 9
};
typedef enum WSTypeID WSTypeID;

52
 Apple Computer, Inc. October 2002

C H A P T E R 3

Web Services Reference

Constant Descriptions
eWSUnknownType

No mapping is known for this type.
eWSNullType

CFNullRef
eWSBooleanType

CFBooleanRef.
eWSIntegerType

 CFNumberRef for 8, 16, and 32-bit integers.
eWSDoubleType

CFNumberRef for long double real numbers.
eWSStringType

CFStringRef.
eWSDateType

CFDataRef.
eWSArrayType

 CFArrayRef.
eWSDictionaryType

CFDictionaryRef.

Web Services Result Codes

The result codes specific to Web services are listed here. In addition, Web services
functions may return other Mac OS X result codes, which are described in Inside
Mac OS X.

errWSInternalError -65793L An internal framework error.
errWSTransportError -65794L A network error occured.
errWSParseError -65795L The server response wasn't valid XML.
errWSTimeoutError -65796L The invocation timed out.

53
 Apple Computer, Inc. October 2002

A P P E N D I X A

A Document Revision History

The following is a change log of this document.

Table A-1 Web services document revision history

Version Notes

Oct. 10, 2002 Replaced and updated description of XML-RPC vs. SOAP.

Sept. 19, 2002 Added fixes and corrections from Apple Engineering to the alpha
draft. Updated cross-references; converted document to
structured FrameMaker format. Tested HTML version. Released
to Production for publication on Apple’s developer
documentation Website under the category of Networking.

Aug. 24, 2002 Preliminary alpha draft completed for engineering review.
Draft discusses Web services features, programming tasks, and
APIs available in Mac OS X (10.2).

54
 Apple Computer, Inc. October 2002

A P P E N D I X A

	Web Services
	Contents
	Figures, Listings, and Tables
	Introduction
	Defining Web Services
	XML-RPC
	SOAP
	WSDL

	Web Service Invocations
	Section 5 Encoding

	The State of XML Web Services
	XML-RPC vs. SOAP
	XML-RPC Specification
	SOAP 1.1 W3C Note
	WSDL Specification
	WSDL Schema
	Developer Resources

	Tasks
	Web Services Toolkits
	Web Services Support in Mac OS X (10.1 or later)
	Canonical Example: XML-RPC over Apple Event
	Sending a Message
	Getting a Response

	Using Apple Events to Target a Website
	Create the Parameter List
	Create the Direct Object for an XML-RPC Call
	Create the Event
	Send the Event

	Using Web Services Core in Mac OS X version 10.2
	Low-Level Feature Set
	WSMethodInvocationRef
	Creating the WSMethodInvocationRef Object

	WSMethodInvocation—Setting Parameters
	Building the Dictionary and Parameter Order Array
	WSMethodInvocation—Result Dictionary
	WSMethodInvocation—Asynchronous
	WSDL Support

	Web Services Reference
	Web Services Functions
	Method Invocation Functions
	WSMethodInvocationCreate
	WSMethodInvocationCreateFromSerialization
	WSMethodInvocationCopySerialization
	WSMethodInvocationSetParameters
	WSMethodInvocationCopyParameters
	WSMethodInvocationSetProperty
	WSMethodInvocationCopyProperty
	WSMethodInvocationInvoke

	Callback Functions
	WSMethodInvocationCallBackProcPtr
	WSMethodInvocationSetCallBack
	WSMethodInvocationScheduleWithRunLoop
	WSMethodInvocationUnscheduleFromRunLoop
	WSMethodResultIsFault

	Serialization and Deserialization Override Support
	WSMethodInvocationSerializationProcPtr
	WSMethodInvocationAddSerializationOverride
	WSMethodInvocationDeserializationProcPtr
	WSMethodInvocationAddDeserializationOverride

	Other Functions
	WSGetWSTypeIDFromCFType
	WSGetCFTypeIDFromWSTypeID
	WSMethodInvocationGetTypeID

	Web Services Data Types
	WSClientContext
	WSMethodInvocationRef

	Web Services Constants
	Web Service Protocol Types
	Dictionary Entries
	Specifying CFHTTPMessageRef as a Property
	SOCKS Proxy Support
	Extra Properties for SOAP Messages
	WSTypeID

	Web Services Result Codes

	Document Revision History

