
Mac OS X integrates five separate application runtime environ-
ments—Carbon, Cocoa, Classic, Java, and BSD—into one seam-
less whole, providing developers with many options. This arti-

cle introduces Cocoa, an important development technology used by
Apple, to develop many of the applications that ship with Mac OS X.
Cocoa constitutes a new, highly efficient way for developers to create new
products for Mac OS X.

A Brief Overview
Cocoa is an object-oriented application framework and runtime environ-
ment—a set of software components used to construct applications that
run on Mac OS X. Think of Cocoa as a large set of reusable application

building blocks that can be used as delivered or
extended for your specific needs.

Cocoa is based on OpenStep, an object-ori-
ented technology that was originally intro-
duced in 1987 as NeXTSTEP and has been
refined through many iterations.
Consequently, Cocoa is mature technology
based on a design years ahead of other
object-oriented frameworks.

Like any software library, Cocoa has a
learning curve for newcomers, but it is not

an overly difficult one and productivity comes
quickly. The Cocoa framework delivers a great deal of fundamental appli-
cation functionality so you can spend the majority of your energy working
on application features rather than managing the more tedious parts of
system interface and user experience implementation.

The primary implementation language used in Cocoa is Objective-C, a
superset of ANSI C with specific language features added to allow for
object-oriented programming. The language extensions in Objective-C are
compact and easy to learn. Cocoa applications make extensive use of the
classes and methods in Cocoa component libraries. However, because of
Objective-C’s compatibility with ANSI C, they can also make use of core
functionality contained in traditional C and C++ libraries brought from
other application environments.

Features and Development Scope
Cocoa is a peer to the Carbon and Java application development environ-
ments in Mac OS X. Cocoa supports all Mac OS X application service fea-
tures. For example, Cocoa applications can access the Mac OS X native

imaging and printing model, multimedia standards QuickTime and
OpenGL, and Internet and BSD services, too. Localization and
Internationalization are also well supported by Cocoa. The separation of
user interface elements from executable code allows you to package your
applications for different locales easily, with no code changes. All Cocoa
text drawing utilizes the Unicode standards. The text and font systems are
particularly flexible and allow you to use sophisticated word processing
features with little effort.

An important development advantage that Cocoa offers is the capability
to develop programs quickly and easily by assembling reusable compo-
nents. With reusable components, developers can not only create applica-
tions, but also produce:
• Frameworks (sophisticated library structures)
• Bundles of executable code and associated resources which can be

loaded and executed dynamically
• Collections of custom user-interface objects

These capabilities support the easy creation and distribution of applica-
tion plug-ins and extensions.

Tools and Resources
Apple put the tools for Cocoa development directly into the hands of
developers by including them in every Mac OS X package on the Mac OS X
Developer Tools CD. Just install the Developer.pkg file and the complete
Apple tool suite is installed and ready for use. This installation includes
the Project Builder Integrated Development Environment, Interface
Builder—the application for designing and testing user interfaces and
establishing the connections between objects and actions—as well as all
the interface files, debugging and performance tools, and full online docu-
mentation.

Once you have installed the Developer.pkg, open a Finder window and
you will find the /Developer directory on your system volume. Inside this
directory, in /Applications, are the Project Builder and Interface Builder
applications along with many other tools. In /Developer/Documentation
are folders containing PDF and HTML help and documentation files for
Cocoa and the developer tools.

Finally, in /Developer/Examples are /AppKit and /Foundation sample
code folders with Cocoa applications for you to learn from and even reuse
for your own project.

Taking Apart the Technology
Cocoa is comprised of two object-oriented frameworks: Foundation

Cocoa: A New Flavor to
Mac OS Development

Godfrey DiGiorgi is Technology Manager for Development Tools & Cocoa in Apple Worldwide Developer Relations. He’s been associated with Macintosh
development for more years than he’d care to admit. He can be reached at ramarren@apple.com.

Apple Developer Connection
Direct

ADC May 2001 4/6/01 2:27 PM Page 1

Updates from the Apple Developer Connection
May 2001

(Foundation.framework) and Application Kit (AppKit.framework). The
Foundation classes provide the low-level objects and functionality that
form the basis of the Cocoa environment. The classes in Application Kit
provide the functionality users see in the user interface, which respond to
system events such as mouse clicks and key presses. The Application Kit is
layered directly on Foundation. Here is a brief look at the functionality
contained in each of these frameworks.

The Foundation Framework is designed to provide a set of basic utility
classes, introduce consistent conventions for paradigms (such as memory
management) support Unicode strings, object persistence, and file man-
agement. Foundation includes:
• the root object class
• classes representing basic data types such as strings and byte arrays
• collection classes for storing other objects
• classes representing system information such as dates and
• classes representing communication ports

Several paradigms are also defined in Foundation to help avoid confu-
sion in common situations and introduce consistency across class hierar-
chies. This is done with some standard policies, like the one used for
object ownership (answering questions such as: “Who is responsible for
disposing of an object?”), and also with abstract classes which enumerate
over collections. These paradigms reduce special and exceptional cases in
code management and allow reuse of the same mechanisms with various
kinds of objects. All together, these paradigms improve development effi-
ciency and productivity.

The Application Kit framework contains all the objects needed to
implement the graphical, event-driven user interface: windows, panels,
buttons, menus, scrollers, text fields, etc. The Application Kit handles all
the details for you as it efficiently draws on the screen, communicates with
hardware devices and screen buffers, clears areas of the screen before
drawing, and clips views. There are over a hundred classes in the
Application Kit, so it might seem a steep learning curve, but many of the
Application Kit classes are support classes that are only used indirectly.

For a detailed listing of the Foundation and Application Kit object
classes, see the documentation in:
/Developer/Documentation/Cocoa/CocoaTopics.html.

Object-Oriented Programming
For traditional Mac programmers, Cocoa development represents a para-
digm shift—from a procedural to an object-oriented development model.
The “free” functionality found in the Foundation and Application Kit
frameworks helps Mac programmers realize the benefits of this easy, natu-
ral way to develop applications.

Object-oriented programming allows the construction of complex
applications through assembling small, well-tested, reusable modules
called objects. This provides three simple advantages:
1. Greater reliability by breaking complex implementations into smaller,
easily testable components.
2. Easier maintainability due to the small, modular nature of objects. (This
small size allows one to fix bugs found in testing more easily.)
3. Greater productivity through reuse. The ability to use an existing class
over and over again means less redundant work. When you need to
extend the functionality of a particular class to meet a specific need, you

can do so easily through the use of a mechanism called inheritance. You
only need to code the specific functionality you are adding to a class, the
rest of the object’s behavior is inherited from the preexisting parent class.
For more information, see the documentation in:
/Developer/Documentation/Cocoa/ObjectiveC/index.html.

Fundamentals of Cocoa Programming
Cocoa is a rich object-oriented environment. Object-oriented programming
makes heavy use of patterns to simplify design and implementation of com-
plex systems. The three most essential patterns to learn when starting are:
1. Model-View-Controller (MVC) - MVC defines three types of objects in
an application: model, view, and controller. Model objects hold data and
define the logic that manipulates that data. View objects represent user
interface elements (a window, for example). Controller objects act as
mediators between model objects and view objects. This mediation role
allows view objects to be free from the programmatic interfaces of models
and vice-versa.
2. Target/Action - This is part of the mechanism by which user interface
controls respond to user actions. When a user clicks a user interface con-
trol, the control sends an action message to the target object.
3. Delegation - Delegation lets you modify an object’s behavior without cre-
ating a custom subclass. A delegate acts on behalf of another object. When
a delegate receives a message (from a window, a view, etc.), the sender of
the message is allowing the delegate to influence its behavior and aid in
decision-making (such as: “Should I allow the user to close me?”).

Cocoa leverages the dynamic binding and object introspection capabil-
ities of Objective-C and Java by allowing delegate objects to implement
just the functionality they want to influence. At runtime, the delegating
objects can query their delegates to see what methods have actually been
implemented. This saves you from having to subclass some specific par-
ent class (that has all the default implementations), helping to preserve
your application’s unique class hierarchy.

• You can use Build Styles instead of duplicate targets
for many things that would require duplicate targets
in other environments.

• All text fields in Project Builder that contain file paths
support path completion (completion is bound to
the F5 key by default).

• Any place where single clicking an item loads that
item into the built-in editor, double-clicking will open
the item in a separate window. This includes the
files list, bookmarks, targets, build results, find
results, etc.

Project Builder
Tips & Tricks

Continued on page ?? ☛

ADC May 2001 4/6/01 2:27 PM Page 2

The following software is available from the Download Software
area of the ADC Member Site at:
http://connect.apple.com/

• CarbonLib 1.3d9 SDK
The latest prerelease version of the CarbonLib 1.3 SDK for Mac OS
• Mac OS USB Driver Development Kit 1.5
http://developer.apple.com/hardware/usb/download.htm

• FireWire 2.8.1 Software Developers Kit (SDK)
http://developer.apple.com/hardware/FireWire/Developer_Info.html
#FireWireSDK

Developer Documentation
• O'Reilly and Apple Collaborate on Mac OS X Book Series
O'Reilly & Associates, has announced plans to publish a series of
books about Mac OS X development. The books in this series have
been technically reviewed by Apple engineers and are recommend-
ed by the Apple Developer Connection. The first Mac OS X titles,
Learning Carbon and Learning Cocoa, are available this May. In
addition, the O'Reilly Network has established the Mac DevCenter, a
web forum for development news and articles.
• Apple Technical Publications
Over thirty new and updated documents have been added in the
last month to help developers with successful Mac OS X application
and peripheral development at:
http://developer.apple.com/techpubs/

TN2015 - Locating Application Support Files Under Mac OS X
TN2014 - Insights on OpenGL
TN2013 - The 'plst' Resource
TN2012 - Building QuickTime Components for Mac OS X

New Mac OS X
Related Releases

Upcoming Seminars
and Events
For more information on Apple developer events please
visit the developer Events page at:
http://developer.apple.com/events/

Training and Seminars

• Apple iServices: Cocoa Development Classes

This five-day course provides comprehensive, hands-on training

using real-world examples. With the skills acquired in this

course, developers can build full-featured applications using the

most advanced software environment on Mac OS X.

http://www.apple.com/iservices/technicaltraining/

cocoadev.html

• Programming With Cocoa

Taught by Aaron Hillegass at the Big Nerd Ranch, Ashville, NC

and Atlanta, GA. Five-day classes are taught on developing

web-based and Mac OS X applications.

http://www.bignerdranch.com/when.html

Developer Related Conferences

•Worldwide Developers Conference (WWDC) 2001,

San Jose, CA

May 21-25

Register now for Apple’s Worldwide Developers Conference

2001, which takes place in San Jose, California from May 21-25.

ADC Premier members receive one free pass to the conference.

For schedules and other details check out:

http://www.apple.com/developer/wwdc2001/

• MacHack Conference, Dearborn, MI

June 21-23

MacHack, in its sixteenth year, remains centered around cutting

edge software development. MacHack’s uniqueness derives from

the informal feel and the LIVE coding that occurs around-the-

clock during the conference.

http://www.machack.com/

“Built for Mac OS X”
Artwork Now Available
Now that customers have Mac OS X in their hands,
they’ll be looking for great products to run on it. Tell the
world that your product runs on Mac OS X by displaying
the “Built for Mac OS X” badge on your product’s pack-
aging. The artwork, licensing requirements, and usage
guidelines are available on the ADC Software Licensing
web site.
http://developer.apple.com/mkt/swl/agreements.
html#macosx

QA1019 - Can’t attach during two-machine debugging with GDB
QA1018 - Using AppleScript to send an email with an attachment
QA1013 - Mac OS X and root access

SC - More than thirty new Mac OS X code samples were posted to
the ADC web site since the last issue. Please visit the URL below for
a complete list of sample code.
http://developer.apple.com/samplecode/

ADC May 2001 4/6/01 2:27 PM Page 3

Learning Cocoa—and Mastering It

To programmers new to Cocoa--Apple’s power-

ful object-oriented application environment--

the road to mastery is a challenging yet

rewarding one. Although there are many new things to

learn, once you become comfortable with Cocoa, your

programming productivity will take off. Guaranteed.

To help you in your Cocoa apprenticeship, Apple

provides two great sources of technical information.

The first is the book Learning Cocoa, published by

O'Reilly. Written by insiders at Apple Computer,

Learning Cocoa mixes conceptual overviews with

hands-on tutorials to give you a crash course in

Cocoa application development. The idea is that

learning Cocoa should not be just a matter of reading,

but doing. Learning Cocoa guides you through the

creation of several applications, each more complex

than the one before. By the end of the book, you'll be

prepared to take on serious application development

on your own. Look forLearning Cocoa in technical

bookstores near you; you can also purchase it direct

from O'Reilly at:

http://www.oreilly.com/catalog/learncocoa/

The second source of information on Cocoa is

Apple’s own technical publications, especially its

Cocoa programming topics. The programming topics

are a hierarchically organized collection of information

nodes on such topics as implementing undo, custom

drawing, and managing text. Each node brings togeth-

er (in an HTML frame set) the conceptual, procedural,

and reference documentation that illuminates a single

programming task. In addition to documentation, a

programming topic includes links to example projects,

technical notes, and other sources of information. If

you have the Developer package installed, you can

access the Cocoa programming topics through the

Developer Help Center. You can also view them on the

ADC Developer Documentation web site at:

http://developer.apple.com/techpubs/macosx/Coc

oa/CocoaTopics.html

Did You Know?

Updates from the Apple Developer Connection
May 2001

Cocoa: A New Flavor to Mac OS Development
Continued from page ??

These patterns are discussed at length in Inside Cocoa: Object-
Oriented Programming and the Objective C-Language and in other parts
of the Cocoa documentation.

Another integral part of Cocoa programming practice is the use of
Interface Builder. Interface Builder is a design tool, allowing you to easily
define and test a user interface. It is also used with Cocoa to define object
classes and “wire” the connections of targets and actions. Interface Builder
creates ‘nib’ files, which are a static representation of objects and their
relationships. These nib files are efficiently loaded as needed at runtime.
Interface Builder is closely tied to the Project Builder IDE for a smoothly
integrated development experience. For more information on Interface
Builder and Project Builder, see the documentation available in:
/Developer/Documentation/DeveloperTools

as well as on the Web at:
http://developer.apple.com/tools/projectbuilder/
http://developer.apple.com/tools/interfacebuilder/

Language Support
Cocoa is implemented in Objective-C. As a superset of ANSI C with special
syntax and runtime extensions, Objective-C lets you use object-oriented
programming techniques while leveraging as much of the use and knowl-
edge of standard ANSI C as possible.

Java can also be used to implement Cocoa applications through the use
of the Java API versions of the Foundation and Application Kit frameworks.
See the Foundation and Application Kit reference locations.

Where to Go for More Information
• Start with the Cocoa technology web page. It includes News and

Updates as well as a list of Resources for Cocoa development.
http://developer.apple.com/cocoa/

• Read Inside Cocoa: Object-Oriented Programming and the
Objective-C Language.

http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html
http://www1.fatbrain.com/documentation/apple/

• Sign up for one of Apple’s development-oriented mail lists, such as
Cocoa Developer, ProjectBuilder-User, or Java Developer.

http://lists.apple.com

• Check out the mailing lists for Mac OS X and Objective- C developers
supported by the Omni Group.

http://www.omnigroup.com/

• Look for the O’Reilly book, Learning Cocoa, due in May, 2001.
http://www.oreilly.com/catalog/learncocoa

In Summary
The demand for Mac OS X applications is huge and Cocoa can help you
bring new products to market quickly, using the full power of Mac OS X
development tools and object-oriented methodology to facilitate your work.

Whatever Mac OS X development path you choose, Apple is eager to
assist you. For the latest Mac OS X news and information, visit the Apple
Developer Connection web site at:
http://developer.apple.com/macosx

ADC May 2001 4/6/01 2:27 PM Page 4

