Toxicological Relevance of Pharmaceuticals and EDCs in Drinking Water

Shane Snyder, Ph.D. Applied R&D Center Southern Nevada Water Authority

COMMUNITY SERVICE ENVRONMENT

Druggeo Waters

Does it matter that pharmaceuticals are turning up in water supplies?

By JANET RALOFF

Treated municipal wastewater entering a Swiss stream. Treatment plants have not been designed to remove excreted drugs before releasing their effluent into public waterways.

MARCH 21, 1998

SCIENCE NEWS, VOL. 153

Drought

Effect on Pharmaceutical and EDC Concentrations

Removal of EDCs and Pharmaceuticals in Drinking and Reuse **Treatment Processes**

Removal of EDCs and Pharmaceuticals in Drinking and Reuse **Treatment Processes**

Prepared by:

Shane A. Snyder, Eric C. Wert, and Hongxia (Dawn) Lei Water Quality Research and Development Division Southern Nevada Water Authority, Henderson, NV 89015 and

Paul Westerhoff and Yeomin Yoon Department of Civil and Environmental Engineering Arizona State University, Tempe, AZ 85287

Subject Area: High-Quality Water

Sponsored by: Awwa Research Foundation 6666 West Quincy Avenue, Denver, CO 80235-3098

Published by:

American Water Works Association

	Finished Drinking Water					
	Hits	% Freq	Min	Max	Median	Ave
DEET	18	90	2.1	30	5.1	8.2
Atrazine	15	75	1.4	430	29	74
Meprobamate	15	75	1.6	13	3.8	6.1
Dilantin	14	70	1.1	6.7	2.3	2.7
Ibuprofen	13	65	1	32	3.8	7.9
Iopromide	13	65	1.1	31	6.5	8.5
Caffeine	12	60	2.6	83	23	25
Carbamazepine	11	55	11	5.7	2.8	2.8
TCEP	7	35	3	19	5.5	10.1
Gemfibrozil	5	25	1.3	6.5	4.2	3.9
Metalochlor	4	20	14	160	86	86
Estrone	2	10	1.1	2.3	1.7	1.7
Progesterone	2	10	1.1	1.1	1.1	1.1
Erythromycin	1	5	1.3	1.3	1.3	1.3
Musk Ketone	1	5	17	17	17	17
Naproxen	1	5	8	8	8	8.0
Oxybenzone	1	5	11	1.1	1.1	1.1
Sulfamethoxazole	1	5	20	20	20	20
Triclosan	1	5	43	43	43	43
Trimethoprim	1	5	1.3	1.3	1.3	1.3

Table 13.2 Summary of EDCs/PPCPs in Finished Drinking Waters (n=20)

Note: min, median, and ave based only on detectable concentrations

Tailored Collaboration

Toxicological Relevance of EDCs and Pharmaceuticals in Drinking Water

Subject Area: Environmental Leadership

Toxicological Relevance of EDCs and Pharmaceuticals in Drinking Water

Prepared by: Shane A. Snyder and Rebecca A. Trenholm Southern Nevada Water Authority Applied Research and Development Center, Henderson, NV 89015

Erin M. Snyder, Gretchen M. Bruce, and Richard C. Pleus Intertox, Inc., Seattle, WA 98121 and Jocelyn D.C. Hemming

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, Madison, WI 53718

Jointly sponsored by: Awwa Research Foundation 6666 West Quincy Avenue, Denver, CO 80235-3098

WateReuse Foundation

California Urban Water Agencies and

and Tailored Collaboration partners:

Southern Nevada Water Authority and other co-funding utilities

Published by:

Distributed by:

American Water Works Association

Publist

Pharmaceuticals

Suspected EDCs Status as an 2 3 EDC Occurrence **Potential** & exposure for toxicity Hundreds of Final purported EDCs candidates Occurrence in Selected data Severity of drinking water, 13 compilations effects especially U.S. **EDCs** screened Potency Resistance to Criteria: conventional PAC, •Pharmacodrinking water In vivo public, kinetics treatment scientific •Relevant species Availability of interest Availability of studies suitable Endocrine method for for risk 5 mediated effect Endocrine analysis assessment •Adverse effect Mode of

Action

Analytical Methods

Environ. Sci. Technol. 2006, 40, 7312-7320

Analysis of Pharmaceuticals in Water by Isotope Dilution Liquid Chromatography/Tandem Mass Spectrometry[†]

BRETT J. VANDERFORD* AND SHANE A. SNYDER Southern Nevada Water Authority, 1350 Richard Bunker Avenue, Henderson, Nevada 89015 pensate for matrix effects by using different calibration techniques, including standard addition (13, 17, 22), surrogate monitoring (15, 20), and various forms of internal calibration (14–16, 19, 23). Still more have been developed to minimize matrix effects using different extraction, cleanup and elution techniques, including size-exclusion chromatography (18, 24), solid-phase extraction (22), LC chromatographic procedures (14, 22), ultra performance liquid chromatography (25), hollow fiber liquid-phase microextraction (26), flow-splitting and reduced eluent flow rates (24, 27). However, most become problematic when applied to the simultaneous analysis of a broad range of compounds that encompass many different classes and structures in matrices having varying degrees of suppression and enhancement.

Chemosphere 65 (2006) 1990-1998

www.elsevier.com/locate/chemosphere

CHEMOSPHERE

Broad range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography tandem mass spectrometry

> Rebecca A. Trenholm *, Brett J. Vanderford, Janie C. Holady, David J. Rexing, Shane A. Snyder

Pharmaceuticals (n=20)

*	Pharmaceuticals	Synonym(s)	Use	MRL (ng/L)
	Atenolol	Tenormin	Beta-blocker	0.25
	Atorvastatin	Lipitor	Antilipidemic	0.25
	o-Hydroxy atorvastatin		Atorvastatin metabolite	0.50
	p-Hydroxy atorvastatin		Atorvastatin metabolite	0.50
	Carbamazepine	Tegretol	Anticonvulsant	0.50
	Diazepam	Valium	Tranquilizer	0.25
	Diclofenac	Voltaren	NSAID	0.25
	Enalapril	Renitec, Vasotec	ACE Inhibitor	0.25
	Fluoxetine	Prozac	Antidepressant	0.50
	Norfluoxetine		Fluoxetine metabolite	0.50
	Gemfibrozil	Lopid	Antilipidemic	0.25
	Meprobamate	Miltown	Anti-anxiety	0.25
	Naproxen	Aleve	NSAID	0.50
	Phenytoin	Dilantin	Antiepileptic	1.0
	Risperidone	Risperidal	Antipsychotic	1.0
	Simvastatin	Zocor	Antilipidemic	0.25
	Simvastatin hydroxy acid		Simvastatin metabolite	0.25
	Sulfamethoxazole	Bactrim	Antibiotic	0.25
	Triclosan		Antimicrobial	1.0
	Trimethoprim		Antibiotic	0.25

Site Selection

Samples collected per time zone

Results

Pharmaceuticals and Endocrine Disrupting Compounds in U.S. Drinking Water

MARK J. BENOTTI, REBECCA A. TRENHOLM, BRETT J. VANDERFORD, JANIE C. HOLADY, BENJAMIN D. STANFORD, AND SHANE A. SNYDER* Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, Nevada 89193-9954

Received July 3, 2008. Revised manuscript received October 3, 2008. Accepted October 13, 2008.

pharmaceutical at sub μ g/L levels is negligible (8), it is not clear what toxicological implications chronic exposure to suites of trace contaminants may pose (9, 10). The degree to which this issue has drawn interest across disciplines is illustrated by the voices of concern stemming from medical professionals, environmental scientists, drinking water municipalities, government agencies, and the general media (9, 11–13). However, if risk assessors and epidemiologists are to link any potential health outcomes with pharmaceutical and EDC occurrence, a better understanding of their occurrence in drinking water is critical.

There is relatively sparse information regarding pharmaceutical and EDC occurrence in drinking water. Researchers in Germany measured ng/L concentrations of clofibric acid in Berlin tap water (14), a case which remains a strong illustration of the sometimes close wastewater to drinking water coupling of unintended water reuse. The elimination of pharmaceuticals at German DWTPs was attributed to ozone oxidation or adsorption to granular activated carbon (15): finished drinking water concentrations

51 Compounds since phytoestrogens not included

Target Compounds

Pharmaceuticals (20)

Potential EDCs (26)

Atenolol **Atorvastatin** o-Hydroxy atorvastatin p-Hydroxy atorvastatin Carbamazepine Diazepam Diclofenac Dilantin Enalapril Fluoxetine Norfluoxetine Gemfibrozil **Meprobamate** Naproxen Risperidone Simvastatin Simvastatin hydroxy acid **Sulfamethoxazole Triclosan** Trimethoprim

Atrazine Benzophenone BHA BHT α-BHC **β-BHC** γ-BHC δ-ΒΗС **Bisphenol A Butylbenzyl phthalate** DEET Diazinon **Dioctyl phthalate** Galaxolide Linuron **Methoxychlor Metolachlor** Musk ketone Nonylphenol Octachlorostyrene **Octylphenol TCEP TCPP Tonalide** Traseolide Vinclozolin

Steroid Hormones (5) Phytoestrogens (11)

Estradiol Estrone Ethinylestradiol Progesterone Testosterone Apigenin Biochanin A Chrysin Coumestrol Daidzein Equol Formononetin Genistein Glycitein Matairesinol Naringenin

Detected in Drinking Water*

Pharmaceuticals

Atenolol

Atorvastatin o-Hydroxy atorvastatin p-Hydroxy atorvastatin

Carbamazepine

Diazepam Diclofenac

Dilantin

Enalapril Fluoxetine

Norfluoxetine

Gemfibrozil Meprobamate

Naproxen Risperidone Simvastatin Simvastatin hydroxy acid

Sulfamethoxazole

Triclosan Trimethoprim

Potential EDCs

Atrazine

Benzophenone BHA BHT α -BHC **B-BHC y-BHC** δ-BHC **Bisphenol A Butylbenzyl phthalate** DEET Diazinon **Dioctyl phthalate** Galaxolide Linuron **Methoxychlor Metolachlor Musk ketone Nonylphenol** Octachlorostyrene Octylphenol **TCEP TCPP** Tonalide Traseolide

Vinclozolin

Steroid Hormones

Estradiol Estrone Ethinylestradiol Progesterone Testosterone

Phytoestrogens

Apigenin Biochanin A Chrysin Coumestrol Daidzein Equol Formononetin Genistein Glycitein Matairesinol Naringenin

* In at least 20% of samples

US Drinking Water

Finished Water for 18 Drinking Water Treatment Facilities					
Compound	Max (ng/L)	Median (ng/L)	Frequency (%)		
Atrazine	870	49	83		
Meprobamate	42	5.7	78		
Dilantin (151 st – 2007)	19	6.2	56		
Atenolol (99 th - 2007)	18	1.2	44		
Carbamazepine	18	6.0	44		
Gemfibrozil	2.1	0.48	39		
ТСЕР	470	120	39		
DEET	93	63	33		
Metolachlor	27	16	33		
TCPP (Fyrol PCF)	510	210	28		
Sulfamethoxazole	3.0	0.39	22		

US Drinking Water

Finished Water for 18 Drinking Water Treatment Facilities						
Compound	Max (ng/L)	Median (ng/L)	Frequency (%)			
	MRL > 1000 ng	g/L				
	MRL > 50 ng	/L				
	MRL > 20 ng	/L				
	MRL > 20 ng	/L				
	MRL > 20 ng	/L				
	MRL > 10 ng	/L				
	MRL > 500 ng/L					
MRL > 100 ng/L						
MRL > 50 ng/L						
	MRL > 1000 ng	g/L				
MRL > 10 ng/L						

Risk Assessment

deriving ADIs / screening values

Selected pharmaceuticals cancer and non cancer endpoints

	Drug	Effect dose (mg/kg-d)	Effect	UF
R	Atenolol	0.80 (LOAEL)	Developmental, human	300
R/M	Atorvastatin o-hydroxy atorvastatin o-hydroxy atorvastatin	20 (LOAEL)	Developmental, rat	3,000
R	Carbamazepine	3.0 (LOAEL)	Developmental, human	300
	Diazepam	1.0 (LOAEL)	Developmental, rat	1,000
	Diclofenac	20 (NOAEL)	Developmental, mouse	300
	Enalapril	0.070 (LOAEL)	Developmental, human	300
	Fluoxetine Norfluoxetine	0.30 (LOAEL)	Developmental, human	300
R	Gemfibrozil	92 (LOAEL)	Developmental, rat	3,000
	Meprobamate	75 (NOAEL)	Systemic, mouse	10,000
	Naproxen	170 (NOAEL)	Reproductive/ Developmental, mouse	300
R/M	Phenytoin	17.5 (NOAEL)	Developmental, mouse	300
R/M	Risperidone	0.16 (LOAEL)	Reproductive, rat	3,000
R	Simvastatin Simvastatin hydroxy acid	0.2 (LOAEL)	Developmental, human	300
	Sulfametho×azole	512 (NOAEL)	Developmental, rat	1,000
	Triclosan	75 (NOAEL)	Systemic, hamster	1,000
	Trimethoprim	192 (NOAEL)	Developmental, rat	1,000

Evidence of Cancer in <u>Rat</u> or <u>M</u>ouse

Pharmaceutical DWELs with max. drinking water concentrations					
Drug	Class	DWEL (µg/L)	Max. conc. (µg/L)	Margin of safety	No. of 8-oz glasses to exceed DWEL
Risperidone	Antipsychotic	0.49	0.0029	170	1,400
Phenytoin	Anticonvulsant	6.8	0.032	210	1,800
Carbamazepine	Anticonvulsant	12	0.018	670	5,600
Fluoxetine	SSRI antidepressant	34	0.00082	41,000	350,000
Norfluoxetine	Metabolite	34	0.00077	44,000	370,000
Diazepam	Benzodiazepine tranquilizer	35	0.00033	110,000	900,000
Gemfibrozil	Antilipidemic	45	0.0021	21,000	180,000
Atenolol	Beta-blocker	70	0.026	2,700	23,000
Meprobamate	Antianxiety agent	260	0.043	6,000	51,000
Triclosan	Antibacterial	2,600	0.0012	2,200,000	18,000,000
Sulfamethoxazole	Anti-infective	18,000	0.003	6,000,000	51,000,000

EDCs

endocrine-mediated endpoints

EDC	Effect dose (mg/kg-d)	Effect	UF		
Atrazine	5.0 (LOAEL)	Neurologic/behavioral, mouse	1,000		
Bisphenol A	0.002 (LOAEL)	Developmental (endocrine), mouse	1,000		
Butylbenzyl phthalate	100 (LOAEL)	Developmental/ reproductive (endocrine), rat	1,000		
DEHP	1.215 (NOAEL)	Developmental (endocrine), rat	100		
17B-Estradiol	0.005 (NOAEL)	Endocrine-mediated effects, human	300		
Estrone	0.004 (NOAEL)	Endocrine-mediated effects, human	300		
Ethinylestradiol	0.0001 (LOAEL)	Endocrine-mediated effects, human	1,000		
Lindane	0.056 (LOAEL)	Reproductive, rat	1,000		
Linuron	Ν	lo new relevant studies			
Methoxychlor	0.020 (LOAEL)	Developmental/behavioral (endocrine), mouse	1,000		
4-Nonylphenol	1.5 (NOAEL)	Renal toxicity, rat (3-gen reproductive study)	30		
4-tert-Octylphenol	12.5 (LOAEL)* Developmental, rat		1,000		
Vinclozolin	No new relevant studies				

*LOAEL observed at lower dose (0.020 mg/kg-d), but not replicated in other studies

EDC DWELs with max. drinking water concentrations						
Drug	Class	ADI- DWEL (μg/L)	Max. conc. (µg/L)	Margin of safety	No. of 8-oz glasses to exceed DWEL	
Atrazine	Herbicide	180	3.0	60	26	
Bisphenol A	Industrial chemical	1,800	0.025	72,000	610,000	
Linuron	Herbicide	70	0.0083	8,400	71,000	
p-Nonylphenol	Industrial chemical	1,800	0.11	16,000	140,000	
Butylbenzyl phthalate	Industrial chemical	3,500	<0.050	>70,000	>590,000	
Bis(2-ethylhexyl) phthalate	Industrial chemical	420	<0.10	>4,200	>36,000	
17b-Estradiol	Hormone	1.8	<0.00050	>3,600	>30,000	
Estrone	Hormone	0.46	<0.00020	>2,300	>19,000	
Ethynylestradiol	Synthetic Hormone	0.0035	<0.0010	>3.5	>30	
Lindane	Insecticide	20	<0.010	>2,000	>17,000	
Methoxychlor	Insecticide	0.70	<0.010	>70	>590	
Octylphenol	Industrial chemical	5,300	<0.025	>210,000	>1,8000,000	
Vinclozolin	Fungicide	420	<0.010	>42,000	>360,000	

Method Reporting Limits based on 100x <dwel< th=""></dwel<>					
	Max Drinking Water Conc. (µg/L)	DWEL (µg/L)	Liters per day to meet DWEL	Recommended MRL (µg/L)	
Phenytoin	0.032	6.8	430	0.1	
Carbamazepine	0.018	12	1,300	0.1	
Fluoxetine	0.001	34	68,000	0.3	
Diazepam	0.001	35	70,000	0.4	
Gemfibrozil	0.002	45	45,000	0.5	
Atenolol	0.026	70	5,400	0.7	
Meprobamate	0.043	260	12,000	3.0	
Bisphenol A	0.025	1,800	144,000	20	
4-Nonylphenol	0.11	1,800	33,000	20	
Sulfamethoxazole	0.003	18,000	1,200,000	200	

"Identifying Hormonally Active Compounds, Pharmaceutical Ingredients, & Personal Care Product Ingredients of Most Health Concern From Their Potential Presence in Water Intended for Indirect Potable Reuse"

> WRF 05-005 – Expert Workshop November 5-6th, 2008

Southern Nevada Water Authority

Approach

- Gather Data from Published Toxicological Studies
- Use Data to Obtain Uncertainty Factor (UF) and Effect Dose
- Use 7 Methods to Obtain Screening Levels
 - NOAEL/LOAEL, Minimum Therapeutic Dose, 2 TTC-Based Approaches, Cancer Slope Factor (CSF), Maximum Tolerated Dose, and Existing Toxicity Critereon
- Compare Results, Choose Most Conservative (Protective of Public Health)

Describe Methods for

Deriving Human Health Risk-Based Screening Levels

Considered Four Approaches:

- a) For noncarcinogenic effects: No observed adverse effect level (NOAEL) or lowest observed adverse effect level (LOAEL) from toxicology studies in humans, with uncertainty factors applied
- b) For carcinogenic effects: Tumor incidence data and linear extrapolation models to derive cancer slope factors (SFs) and target levels based on incidence of cancer
- c) For drugs: Minimum therapeutic dose
- d) Threshold of Toxicologic Concern (TTC)

Toxicological Data Used to Develop Screening Levels for Noncancer Endpoints for Target PPCPs

PPCPs with Evidence of Carcinogenicity and Tumor Data, and Slope Factors (SFs) and Screening Levels

Compound	Eviden	æ	Tumor incidence data	Cancer SF (mg/kg-d) ⁻¹	Screening level based on CSF (µg/kg-d)
Fluconazole He Evidence of live cancer in male ra	epatocellular adenomas in rats	(M) Tumor incidence data: 2 year study at 4 dose levels	CPDB 2007a: 2 yr, rat (M) 0 mg/kg-d = 2/100 2.5 mg/kg-d = 0/50 5.0 mg/kg-d = 4/50 10 mg/kg-d = 5/50 Cancer slope factor derived using tumor incidence data and EPA Benchmark Dose Model (estimate dose that produces 10% excess risk, then extrapolate to produce upper-bound estimate risk per 1 mg/kg-d of dose	LIE-02 Calculated a acceptable lift cancer risk million, and t is exposed to 365 d/yr for 70 yr l = (10 ⁶ x 25 10.9	0.21 assuming an etime excess of I in one that a person to this dose 30 yrs over a ifetime ,550)/ (SF x 950)

Minimum Therapeutic Doses for Target PPCPs and EDCs, and Corresponding Screening Levels

Threshold of Toxic Concern (TTC)-based Screening Levels for PPCPs

Derived Screening Values From Seven Approaches (µg/kg-d)

	Atenolol	Atrazine	Estradiol	Meprobamate
Based on NOAEL/LOAEL	0.027	0.05	0.000033	75
Based on Minimum Therapeutic Dose	0.012	NA	0.00001	2.3
Cheeseman <i>et al.</i> (1999) TTC Approach	0.21	0.021	0.43-0.64	0.021
Kroes <i>et al.</i> (2004) TTC Approach	1.3	1.3	26	1.3
Based on CSF	NA	0.0043	0.012	NA
Based on Max. Tolerated, Dose (Carcinogens)	2	0.027	0.00059	NA
Existing Toxicity Criterion	NA	0.0043	0.00043	NA

"New" Derivation of Screening Levels

- Based on Blanket Uncertainty Factors:
 - 1,000 if NOAEL Data Are Available
 - 3,000 if only LOAEL Data Are Available
 - Multiply by additional factors of 10 when
 - 1. Compound is a Non-genotoxic Carcinogen
 - 2. Compound is a known EDC
- Provides Ease of Use in Process
 - Still Maintains Robust Approach through Multiple Derivations of Screening Levels

DRAFT Decision Tree for Screening Levels (WRF 05-005)

Example Process for NOAEL/LOAEL Approach

	Atenolol	Atrazine	Ethinyl Estradiol	Meprobamate
Description	PPCP	Herbicide & EDC	PPCP & EDC	PPCP
Effect	Developmental (Human)	Developmental (Rat)	Endocrine (Human)	Systemic (Mouse)
Effect Dose (mg/kg-d)	0.8	0.5	0.0001	75
NOAEL or LOAEL	LOAEL	NOAEL	LOAEL	NOAEL
"Old" UF	3000	5000	1000	10,000
Genotoxic?	No	No	No	No
Carcinogenic?	Yes, Thyroid	Yes, Mammary	Yes, Liver	No
"New" UF	3000 x 10	1000 x 10	3000 x 10	1000
New Screening level (µg/kg-d)	0.027	0.05	0.000033	75

Conclusions

BUT What about the MIXTURES?

WHO – Drinking Water Quality Guidelines

8.2.9 Mixtures

Chemical contaminants of drinking-water supplies are present with numerous other inorganic and/or organic constituents. The guideline values are calculated separately for individual substances, without specific consideration of the potential for interaction of each substance with other compounds present. The large margin of uncertainty incorporated in the majority of the guideline values is considered to be sufficient to account for potential interactions. In addition, the majority of contaminants will not be continuously present at concentrations at or near their guideline value.

October 20, 2006 LAS VEGAS SUN Chemicals cause changes in fish and raise concerns for humans

By Launce Rake <<u>lrake@lasvegassun.com</u>> Las Vegas Sun

There's something wrong with the fish.

It's been confounding scientists for years: Male fish are developing female sexual characteristics in Lake Mead and other freshwater sources around the country.

On Thursday, the U.S. Geological Survey released a four-page summary of more than a decade of studies linking wastewater chemicals to those changes.

Conclusions

- Trace amounts of steroids and pharmaceuticals have been reported in water for more than 30 years
- Robust analytical methods are capable of accurately detecting and quantifying chemicals in water at levels < 0.00000001 g/L
- Only 11 of 62 target compounds were detected in finished drinking water (>20% frequency)
 - Atrazine had highest frequency at 83%, but at less than $1/3^{rd}$ the MCL
 - If MRLs were 10 ng/L, then 9 of 62 would have been detected
 - If MRLs were 100 ng/L, then 3 of 62 would have been detected
 - If MRLs were 1000 ng/L, then no compounds would have been detected
- Exposure to estrogenic chemicals in diet are far greater than in drinking water
- Toxicological relevance is critical in order to establish meaningful treatment and analytical goals

Conclusions

- Using EPA risk assessment paradigm, the DWELs for indicator pharmaceuticals and EDCs are FAR higher than occurrence
 - Pharmaceuticals have the "richest" toxicological data of any environmental contaminants (human data)
 - Conservative uncertainty factors used
 - Even if additional uncertain factors of 10-100x were applied for synergism/additivity, the DWELs would still be higher than occurrence
- The energy/water nexus is absolutely critical
 - We must avoid "moving" our pollution from water to air
 - Holistic risk evaluation is needed "cradle to grave"
- Rapid screening values can be developed to allow a "ball park" assessment of human health relevance from minimal datasets

Shane Snyder shane.snyder@snwa.com