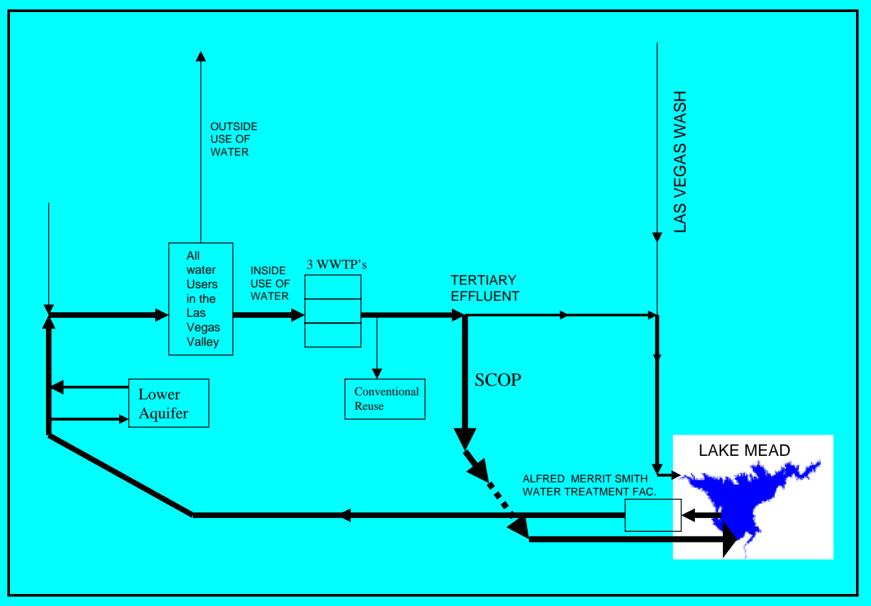
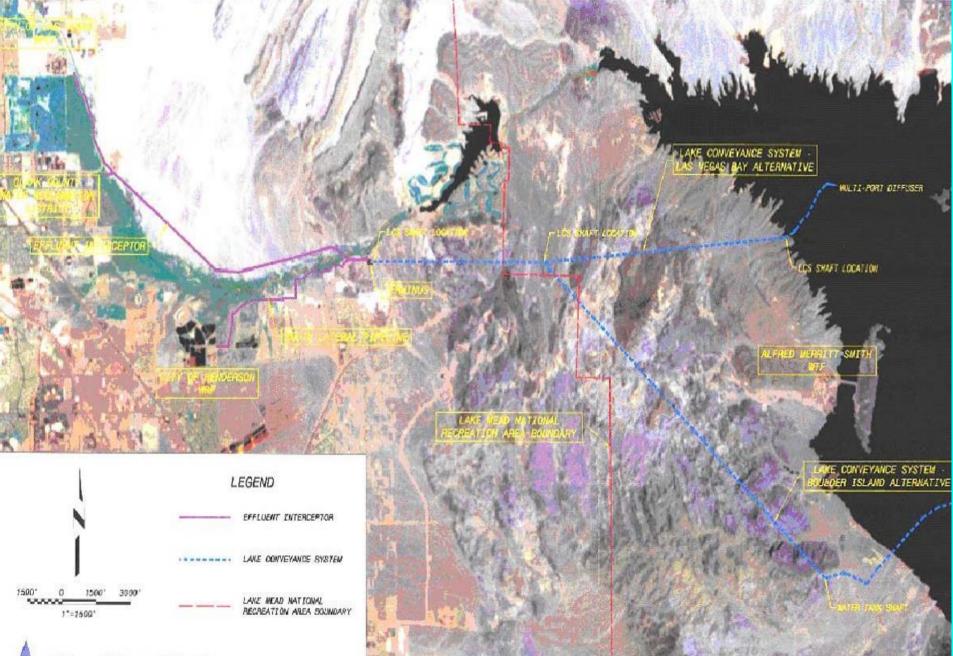
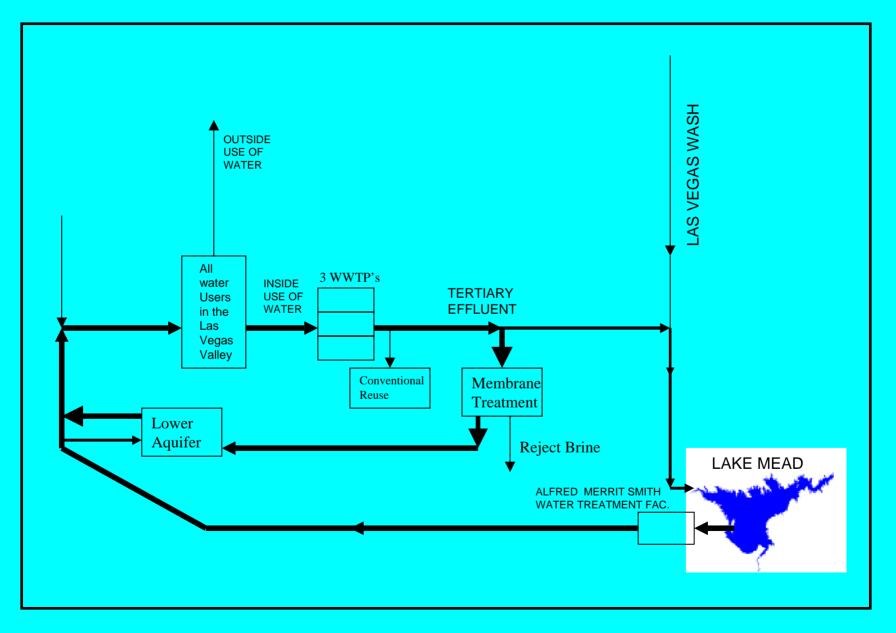

Indirect Potable Water Reuse Should it be Considered?

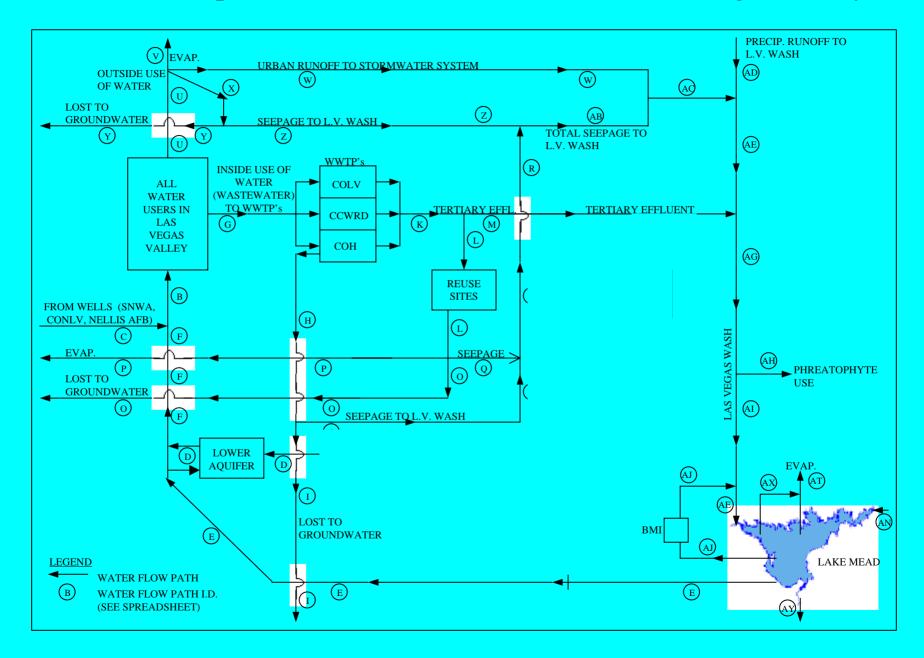


Walter S. Johnson, PE


SIMPLIFIED FLOW SCHEMATIC OF HYDROLOGIC CYCLE IN LAS VEGAS VALLEY

SCHEMATIC OF HYDROLOGIC CYCLE IN LAS VEGAS VALLEY -**SCOP** IMPLEMENTATION SCENARIO


SCOP


Justification Provided for SCOP

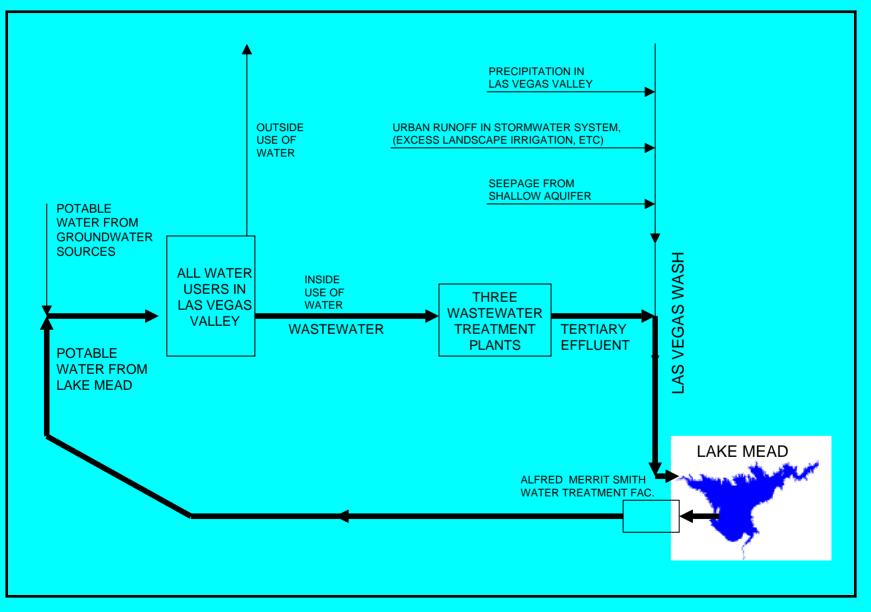
- New discharge location offers mixing and dilution advantages.
- •Reduced nutrient discharge to Las Vegas Bay.
- Reduce impact to SNWA water intakes.
- •Effluent discharge at Boulder Basin would not be subjected to TMDLs in a loading basis, but in a concentration basis.

SCHEMATIC OF HYDROLOGIC CYCLE IN LAS VEGAS VALLEY - **IPWR** IMPLEMENTATION SCENARIO

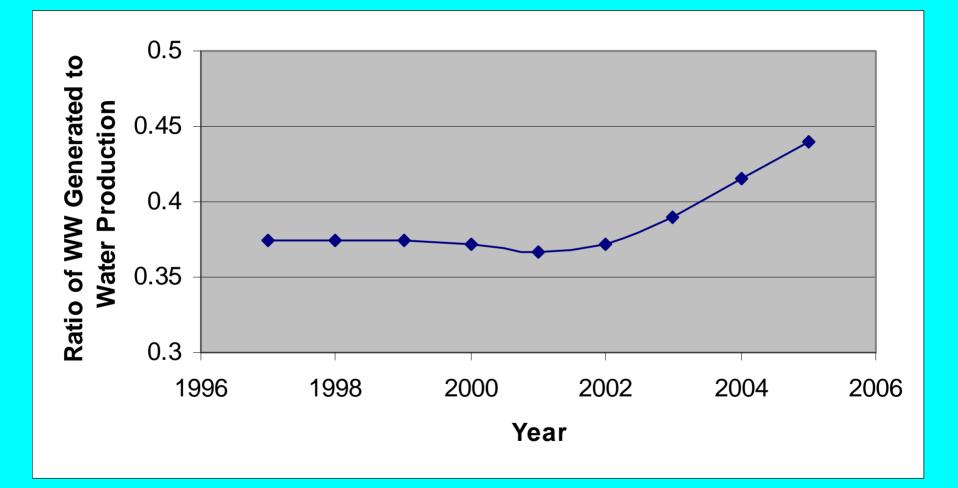
Comprehensive Water Balance of the Las Vegas Valley

WATER BALANCE OF LAS VEGAS VALLEY & LAKE MEAD (Page 1 of 4)

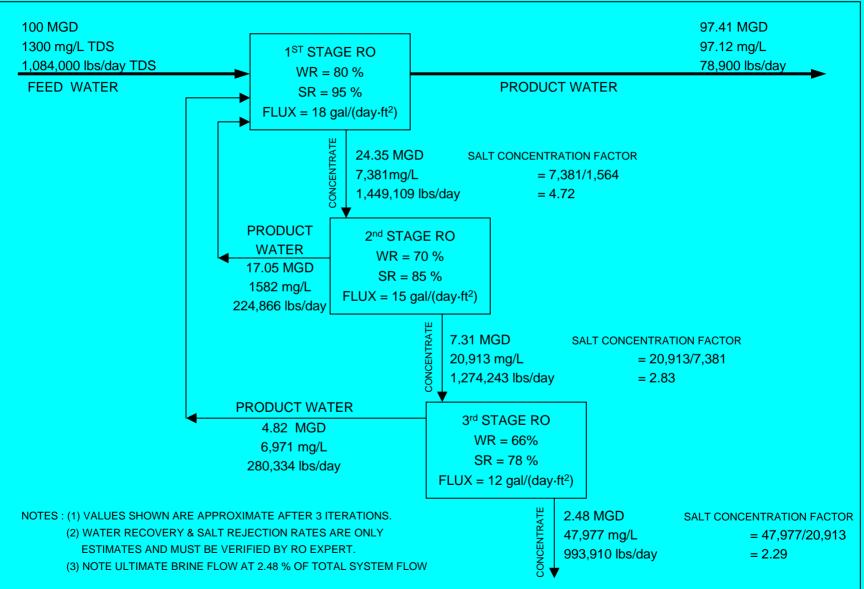
Α	В	С	D	Е	F	G	Н		J	K	L	М
	From	From	Esťd	B – C –	D + E	From	Est'd	Est'd at	Est'd at	G – H	From	K-L
	SNWA	SNWA	from	D		SWAC or		25 % of	75 % of		SWAC or	
	or Est'd	or Est'd	studies			Est'd		H, or	H, or		Est'd	
								rough	rough			
								estimat	estimate			
								е				
	POTABLE WATER SUPPLIED TO ALL WATER USERS IN LAS VEGAS VALLEY					CITY OF HENDERSON WWTP PONDS AND RIB's						
	TOTAL	FROM	FROM	FROM	TOTAL		WATER		F WATER			
	WATER	WELLS	PROP.	LAKE	FROM	INSIDE USE	APPLIED TO		TO GROUND			TERTIARY
	SUP. TO ALL		IPWR/ ASR	MEAD (SNWS)	IPWR & ASR	OF WATER	PONDS AND RIB's	SUF	RFACE			EFFLUENT
	WATER		SYSTEM	Colorado	LAKE	DISCHARGED	RID 5			TERTIARY EFFLUENT	TERTIARY EFFLUENT	EITHER DISCHARGED
	USERS		OTOTEM	River	MEAD	AS				FROM THE	DISCHARGED	TO LV WASH
YEAR				Water		WASTEWATER				THREE	TO REUSE	OR AVAILABLE
						TO WWTP's at COLV, CCWRD		LOST TO GROUND	SEEPAGE TO LAS	WWTP's	SITES	FOR IPWR/
						& COH		-WATER	VEGAS			ASR SYSTEM
									WASH			(membrane trt.)
	MGD	MGD	MGD	MGD	MGD	MGD	MGD	MGD	MGD	MGD	MGD	MGD
1997	359.6	41.67	0.0	317.93	317.93	134.14	2.0	0.49	1.50	132.15	9.75	122.40
1998	364.8	41.44	0.0	323.36	323.36	140.43	1.8	0.45	1.35	138.63	12.64	125.99
1999	403.7	40.5	0.0	363.2	363.2	146.87	1.7	0.43	1.28	145.17	13.45	131.72
2000	427.2	40.84	0.0	386.36	386.36	156.51	1.6	0.40	1.20	154.91	15.71	139.20
2001	437.3	43.17	0.0	394.13	394.13	160.5	1.5	0.38	1.13	159.00	16.22	142.78
2002	432.3	42.86	0.0	389.44	389.44	165.36	1.4	0.35	1.05	163.96	19.73	144.23
2003	417.2	41.33	0.0	375.87	375.87	162.71	1.3	0.33	0.98	161.41	19.62	141.79
2004	420.0	41.5	0.0	378.5	378.5	168.0	1.2	0.30	0.89	166.8	20.9	146.0
2005	425.0	41.5	0.0	383.5	383.5	174.0	1.0	0.25	0.75	173.0	21.3	151.7
2006 2007	430.0 437.0	41.5	0.0 0.0	388.5 .395.5	388.5 395.5	176.3 183.5	1.0	0.25	0.75	175.3	21.9	153.4
2007	437.0	41.5	0.0	.395.5 406.5	395.5 406.5	201.6	1.0 1.0	0.25 0.25	0.75 0.75	182.5 200.6	22.8 23.8	159.7 176.8
2008	448.0 455.0	41.5 41.5	0.0 24.5	406.5 389.0	406.5 413.5	201.6 213.9	1.0	0.25 0.25	0.75 0.75	200.6 212.9	23.8 24.5	176.8
2009	455.0	41.5	24.5 73.5	369.0 349.0	413.5	213.9 218.0	1.0	0.25	0.75	212.9 217.0	24.5 25.0	192.0
2010	404.0 560.0	41.5	196.0	349.0 322.5	422.5 518.5	210.0	1.0	0.25	0.75	277.0	25.0	253.5
2020	668.0	41.5	269.5	357.0	626.5	334.0	1.0	0.25	0.75	333.0	26.0	307.0
2040	750.0	41.5	318.5	390.0	708.5	390.0	1.0	0.25	0.75	389.0	26.5	362.5
2050	840.0	41.5	392.0	406.5	798.5	460.0	1.0	0.25	0.75	459.0	27.2	431.8


INDIRECT POTABLE WATER REUSE (IPWR) An alternative to SCOP Advantages:

•Removal of several contaminants (e.g. PCPP's, endocrine disrupters, nutrients) from Lake Mead and the Colorado.


- Significant reduction of TDS discharged to the Colorado River.
- •Less cost than SCOP, and IPWR achieves much better water quality.
- Drought-Proof source of water because of less reliance on Lake Mead.

SIMPLIFIED FLOW SCHEMATIC OF HYDROLOGIC CYCLE


IN LAS VEGAS VALLEY

Historical Wastewater/Water Ratios in Las Vegas Valley using 3-year Moving Averages

PRELIMINARY FLOW SCHEMATIC OF 3-STAGE RO SYSTEM AT 100 MGD FEED

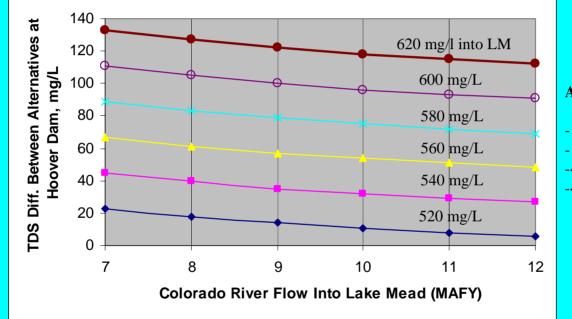
MAJOR IMPACTS OF IPWR ON WATER QUANTITY AND QUALITY

IPWR'S IMPACTS ON WATER QUANTITY

• Effluent not returned to Lake Mead as "Return Flow Credit" is compensated by use of high quality water generated by membrane.

•Loss due brine generation with IPWR: 2.5% of 400 MGD= 10 MGD at year 2050.

IPWR'S IMPACTS ON WATER QUALITY


- Contrary to SCOP, which focuses exclusively on reduction of phosphorus levels, IPWR would remove most contaminants of the water treated.
- IPWR presents major flexibility relating to future emerging contaminants.

IPWR'S IMPACTS ON WATER QUALITY

•IPWR would have major impact on the TDS concentrations in the Colorado: At year 2050 and 400 MGD, net TDS concentration difference between SCOP and IPWR in downstream Colorado River is estimated at 30 to 50 mg/L.

• The Colorado River Basin Salinity Control Program estimates that each 1 mg/L TDS over 500 mg/L discharged to the Colorado causes a \$ 2.6 M/year (1994 dollars) damage to the Colorado (www.usbr.gov/crwq.html).

TDS Differences Between Alternatives at Various Flows in Colorado River

- Year 2050
- 400 MGD feed to membrane
- -- 1300 mg/L feed to membrane
- -- 2500 mg/L in the LV Wash

Example Typical Economic Evaluation

	Alternative "A"	Alternative "B"
Capital Cost	\$ 100 M	\$150 M
Annualized Capital Cost *	\$6.65 M/year	\$ 9.97 M/year
Annual O & M Cost	\$8.50 M/year	\$4.50 M/year
Total Annual Cost	\$15.15 M/year	\$14.47 M/year

*Annualized capital cost is determined using a capital recovery factor based on 6% interest and 40 years life. CRF=0.06646

•Although the capital cost of "A" is less, the total annual cost is more.

COST COMPARISON SCOP VERSUS IPWR

	SCOP Alternative	IPWR Alternative
Capital Cost [*]	\$ 623.00 M	\$1,246 M
Annualized Capital Cost **	\$ 41.96 M/year	\$ 83.93 M/year
Annual O & M Cost	\$ 656.46 M/year	\$ 556.66 M/year
Total Annual Cost	\$ 698.42M/year	\$ 640.59 M/year

Total annual cost of IPWR alternative is \$ 57.83 M/year less than SCOP, or 8.3% less.

* Capital cost is present worth of capital cost

** Annualized capital cost is determined using a capital recovery factor based on 6% interest And 38 years life period. CFR = 0.06736

IPWR Systems

• <u>Planned IPWRs</u>

Those systems intentionally designed to recover highly treated wastewater effluent and blend into potable water systems.

• Unplanned IPWRs

Those systems whereby water is extracted from a stream or Lake for potable water purposes and is located downstream of a wastewater effluent discharge. This occurs in several instances in the World, including here in Las Vegas.

PUBLIC PERCEPTION

• Several IPWR systems are currently operating or planned in the US:

- Orange County, CA = 70 MGD, to go online August 2007
 Scottsdale, AZ = 7 MGD, in operation
- El Paso, TX= 5 MGD, in operation
- West LA Basin, CA= 20 MGD, in operation
- Occaguan, Virginia, in operation
- -San Diego, CA. = 15 MGD, planning stage

SUMMARY

• SCOP is a pipeline/tunnel/diffuser system that will continue to discharge tertiary effluent to Lake Mead with impact on phosphate levels only. The removal of other contaminants will not be impacted by SCOP.

• SCOP development is proceeding and plans are to start construction in two years.

SUMMARY

IPWR has several advantages:

• Significant removal of all contaminants contained in tertiary effluent.

•Significant cost savings when considering major impacts to all other users in the lower Colorado River Basin.

•Provides a very high quality, drought-proof source of potable water.

Disadvantages of IPWR

- Minimal loss of water (2.5 %) due to brine generation
- Public perception