Aspect ratio (image)

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Five common aspect ratios
4:3
3:2
16:9
1.85:1
2.39:1

The aspect ratio of an image is its width divided by its height.

Aspect ratios are mathematically expressed as x :y (pronounced "x-to-y") and x×y (pronounced "x-by-y"). The most common aspect ratios used today in the presentation of films in movie theaters are 1.85:1 and 2.39:1.[1] Two common videographic aspect ratios are 4:3 (1.33:1), universal for standard-definition video formats, and 16:9 (1.78:1), universal to high-definition television and European digital television. Other cinema and video aspect ratios exist, but are used infrequently. In still camera photography, the most common aspect ratios are 4:3, 3:2, and more recently being found in consumer cameras, previously only commonly seen in professional cameras, 16:9[2]. Other aspect ratios, such as 5:4, 6:7, and 1:1 (square format), are used in photography as well.

In television and on DVDs, converting formats of unequal ratios is done by cropping the original image to the receiving format's aspect ratio (zooming), by adding horizontal mattes (letterboxing) or vertical mattes (pillarboxing) to retain the original format's aspect ratio, or by distorting the image to fill the receiving format's ratio. Cinematographic aspect ratios are usually denoted as a decimal fraction width to unit height, while videographic aspect ratios are usually denoted by ratios of whole numbers.[citation needed]

Contents

[edit] Practical limitations

In motion picture formats, the physical size of the film area between the sprocket perforations determines the image's size. The universal standard (established by William Dickson and Thomas Edison in 1892) is a frame that is four perforations high. The film itself is 35 mm wide (1.38 in), but the area between the perforations is 24.89 mm×18.67 mm (0.980 in×0.735 in), leaving the de facto ratio of 4:3, or 1.33:1.[3]

With a space designated for the standard optical soundtrack, and the frame size reduced to maintain an image that is wider than taller (mimicking human eyesight), this resulted in the Academy aperture of 22 mm × 16 mm (0.866 in × 0.630 in) or 1.37:1 aspect ratio.

[edit] Cinema terminology

The motion picture industry convention assigns a value of 1.0 to the image’s height; thus, an anamorphic frame (actually 2.39:1) is described (rounded) as 2.40:1 or 2.40 ("two-four-oh"). In American cinemas, the common projection ratios are 1.85:1 and 2.40:1. Some European countries have 1.66:1 as the wide screen standard. The "Academy ratio" of 1.37:1 was used for all cinema films until 1953 (with the incarnation of George Stevens's Shane). During that time, television, which had a similar aspect ratio of 1.33:1, became a threat to movie audiences, Hollywood gave birth to a large number of wide-screen formats: CinemaScope, Todd-AO, and VistaVision to name just a few. The "flat" 1.85:1 aspect ratio was introduced in May, 1953, and became one of the most common cinema projection standards in the U.S. and elsewhere.

[edit] Movie camera systems

Development of various film camera systems must ultimately cater to the placement of the frame in relation to the lateral constraints of the perforations and the optical soundtrack area. One clever wide screen alternative, VistaVision, used standard 35 mm film running sideways through the camera gate, so that the sprocket holes were above and below frame, allowing a larger horizontal negative size per frame as only the vertical size was now restricted by the perforations. However, the 1.50:1 ratio of the initial VistaVision image was optically converted to a vertical print (on standard 4-perforation 35 mm film) to show in the projectors available at theaters, and was then masked in the projector to the US standard of 1.85:1. Though the format was briefly revived by Lucasfilm in the 1970s for special effects work that required larger negative size (due to image degradation from the optical printing steps necessary to make multi-layer composites), it went into obsolescence largely due to better cameras, lenses, and film stocks available to standard 4-perforation formats, in addition to increased lab costs of making prints in comparison to more standard vertical processes. (The horizontal process was later adapted to 70 mm film by IMAX.)

Super 16 mm film is frequently used for television production due to its lower cost, lack of need for soundtrack space on the film itself (as it is not projected but rather transferred to video), and aspect ratio similar to 16:9 (the native ratio of Super 16 mm 1.66:1 while 16:9 is 1.78:1). It also can be blown up to 35 mm for theatrical release and therefore is also used for feature films.

[edit] Current video standards

[edit] 4:3 standard

The 4:3 ratio (generally named as "Four-Three", "Four-by-Three", "Four-to-Three", or "Academy Ratio") for standard television has been in use since television's origins and many computer monitors use the same aspect ratio. 4:3 is the aspect ratio defined by the Academy of Motion Picture Arts and Sciences as a standard after the advent of optical sound-on-film. By having TV match this aspect ratio, films previously photographed on film could be satisfactorily viewed on TV in the early days of the medium (i.e. the 1940s and the 1950s). When cinema attendance dropped, Hollywood created widescreen aspect ratios (such as the 1.85:1 ratio mentioned earlier) in order to differentiate the film industry from TV.

[edit] 16:9 standard

16:9 (generally pronounced as "Sixteen-by-Nine"; alternates include "Sixteen-Nine" and "Sixteen-to-Nine") is the international standard format of HDTV, non-HD digital television and analog widescreen television (EDTV) PALplus. Japan's Hi-Vision originally started with a 5:3 ratio but converted when the international standards group introduced a wider ratio of 5⅓ to 3 (=16:9). Many digital video cameras have the capability to record in 16:9. Anamorphic transfers onto DVD horizontally squeeze the original widescreen image to store the information into a 4:3 aspect ratio DVD frame. If the TV has a feature to un-squeeze an anamorphic image, it will horizontally decompress the image to 16:9. If not, many DVD players can also reduce scan lines and add letterboxing bars above and below the image before sending it to the TV. This is made easier by the simple 4:3 aspect ratio between 4:3 and 16:9 (16:9 = 4:3 × 4:3). DVD producers can also choose to show even wider ratios such as 1.85:1 and 2.39:1[1] within the 16:9 DVD frame by hard matting or adding black bars within the image itself. Some films which were made in a 1.85:1 aspect ratio, such as the U.S.-Italian co-production Man of La Mancha, fit quite comfortably onto a 1.78:1 HDTV screen and have been issued anamorphically enhanced on DVD without the black bars.

[edit] Why 16:9 was chosen by the SMPTE

Equal area comparison of the aspect ratios used by Dr. Powers to derive the SMPTE 16:9 standard.[4] TV 4:3/1.33 in red, 1.66 in orange, 16:9/1.78 in blue, 1.85 in yellow, Panavision/2.2 in mauve and CinemaScope/2.35 in purple.

When the 16:9 aspect ratio was proposed by Dr. Kerns H. Powers, a member of the SMPTE Working Group On High-Definition Electronic Production, nobody was creating 16:9 videos. The popular choices in 1980 were: 4:3 (based on television standard's ratio at the time), 1.66:1 (the European "flat" ratio), 1.85:1 (the American "flat" ratio), 2.20:1 (the ratio of 70 mm films and Panavision) and 2.35:1 (the CinemaScope ratio for anamorphic widescreen films). Dr. Powers cut out rectangles with equal areas and shaped them to match each of the popular aspect ratios. When overlapped with their center points aligned, he found that all of those aspect ratio rectangles fit within an outer rectangle with an aspect ratio of 1.78:1 and all of them also covered a smaller common inner rectangle with the same aspect ratio 1.78:1.[4] The geometric mean of the extreme aspect ratios, 4:3 (1.33:1) and 2.35:1, is also 1.77:1 which is coincidentally close to 16:9 (1.78:1).

While 16:9 (1.78:1) was initially selected as a compromise format, the subsequent popularity of HDTV broadcast has solidified 16:9 as perhaps the most important video aspect ratio for the future.[citation needed] Most 4:3 (1.33:1) and 2.39:1 video is now recorded using a "shoot and protect" technique[5] that keeps the main action within a 16:9 (1.78:1) inner rectangle to facilitate HD broadcast.[citation needed]

After the original 16:9 Action Plan of the early 1990s, the European Union has instituted the 16:9 Action Plan,[citation needed] just to accelerate the development of the advanced television services in 16:9 aspect ratio, both in PAL and also in HDTV. The Community fund for the 16:9 Action Plan amounted to 228 million.

[edit] 16:9 in Europe

In Europe, 16:9 is being adopted as the standard broadcast format for digital and high definition TV. Some countries have even adopted the format for analog television by means of the PALplus standard.

Country Channel
Austria Austria ORF1, ORF2, ORF Sport Plus, ORF1 HD, PULS 4, ProSieben Austria, Sat.1 Österreich (all main channels except ATV)
Belgium Belgium Flanders: all Flemish channels except TMF Flanders
Wallonia: La Une, La Deux, RTL TVI, Club RTL, Plug TV
Bulgaria Bulgaria The Voice TV, RE:TV, TV7*, RING.BG* PRO.BG*
* Do not set the aspect ratio correctly when broadcasting in 16:9 and the image appears stretched on 4:3 TV sets. Such stations use mostly 4:3 programming.
Czech Republic Czech Republic TV Nova, Česká televize, TV Nova HD, TV Prima, TV Barrandov
Denmark Denmark Almost all main channels[citation needed]
Finland Finland All main channels, including but not limited to YLE TV1, YLE TV2, MTV3, Nelonen
France France TF1, France 2, France 3, Canal+ (Canal+, Canal+ Cinéma, Canal+ Sport), France 5, M6, Arte, Direct 8,W9, TMC, NRJ 12, France 4, IDF1, NRJ Paris, TPS Star, TF1HD, France 2HD, Canal+HD, M6HD, ArteHD on the French DVB-T (TNT)
And many more via ADSL, DVB-C and DVB-S:
Canal+ Décalé, Canal+ Family Poker Channel, CinePlay, Ciné Cinéma Premier, OL TV, Motors TV, Disney Cinemagic, Disney Cinemagic + 1, NRJ Hits, Ciné Cinéma Premier HD, National Geographic HD, Ushuaia TV HD, Disney Cinemagic HD, MTV HD, NRJ 12 HD, iConcert HD, HD1, Melody Zen HD, Sci Fi Channel HD, 13ème Rue HD, Orange cinemax HD
Germany Germany ARD (Das Erste, EinsExtra, EinsFestival, EinsPlus; BR and BR-alpha, HR, WDR, SWR, RBB, RB), ZDF, 3sat, Arte, DW, Phoenix; kabel eins, ProSieben, Sat.1; RTL, RTL II, Super RTL, VOX; and others (all main channels)
Greece Greece Skai TV[6], MTV Greece, ERT Digital
Hungary Hungary Magyar Televízió (m1, m2), TV3, TV6, Sport TV (1,2), Duna TV HD, Echo TV
Republic of Ireland Ireland RTÉ One, RTÉ Two, TV3, TG4, 3e, and Setanta Ireland
Israel Israel All main channels, including but not limited to Hot, Yes
Italy Italy All the 10 SKY Cinema channels, all the 6 SKY Sport channels, all the 15 SKY Calcio channels, all the 60 SKY Prima Fila channels, Discovery Channel Italy, National Geographic Channel Italy, all dahlia TV channels, all Premium Calcio channels, Premium Cinema, Studio Universal, Rai Sport Più.

Occasionally 16:9 widescreen programming may be shown also on La7, AXN and some RAI and Mediaset channels.

Luxembourg Luxembourg RTL Télé Lëtzebuerg, Luxe.tv
Montenegro Montenegro RTV Panorama
Netherlands Netherlands Almost all nationwide channels (Netherlands Public Broadcasting, RTL, SBS), BravaHDTV
Norway Norway Almost all main channels
Poland Poland Polsat 2 International, Polsat News, Polsat Sport, Polsat Sport Extra, Canal+, Canal+ Film, Canal+ Sport, Ale Kino!, TVN Siedem, Religia TV, TVN 24, TVN Meteo, TVN CNBC Biznes, TVN Style, TVN Turbo, TVP Kultura, TVP1, TVP2, TVP Polonia, TVP HD
Portugal Portugal RTP1, RTP2 (both letterbox PALplus), TVCine 1, TVCine 2, TVCine 3, TVCine and in 2010, SIC.
Serbia Serbia Cinemania, RTS Digital
Slovakia Slovakia Markíza, Slovenská televízia
Slovenia Slovenia RTS Maribor, RTS Maribor HD, Radiotelevizija Slovenija HD, INFO TV HD (occasionally 16:9: POP TV, Kanal A, TV Pika) (16:9 Letterbox INFO TV, Sport Klub, TV3, Radiotelevizija Slovenija 1 and 2 )
Spain Spain Nationally only on DTT and satellite: All HD channels, all Digital + Taquilla PPV channels, GOL TELEVISIÓN SD simulcast version, Canal + Liga, Canal + Acción, Canal + DCine, Canal + Acción 30, Canal + Comedia, Canal + Comedia 30, Canal + Fútbol, Canal + 2, Golf +, Canal +, Canal + ...30, Canal + Eventos, Dcine Español, Canal + Deportes and Sportmanía (on all channels all the time), antena.neox, antena.nova, La Sexta, Telecinco, La Siete, antena 3, FactoríaDeFicción and Cuatro (on all channels only some of their programs), VEO and Intereconomía (a few programs are aired anamorphic in 4:3 aspect ratio frame but without been signalized as widescreen). Regionally and Locally only on DTT: All HD channels, esMADRIDtv, Més tv, MARESMEDIGITAL TV and giralda tv (on all channels all the time), TV3, Aragón Televisión, ETB 1, ETB 2, ETB 3 and ETB SAT (on all channels most of their programs), IB3, Telemadrid, TVG, G2, Canal 9, Canal Sur 2, Canal Sur, CyL7, 9laLoma, Punt 2, Canal Extremadura, laOtra, TV Almansa, Infocanal, 8madrid and BTV (on all channels some of their programs), Ver-T, Onda 6, Popular TV, Kiss TV, CyL8, TV Canaria, TV Canaria dos, TV Canaria sat and LDTV (on all these channels a few programs are aired anamorphic in 4:3 aspect ratio frame but without been signalized as widescreen).
Sweden Sweden Almost all main channels
Switzerland Switzerland All SRG SSR idée suisse channels
United Kingdom UK All main digital channels (BBC One, BBC Two, ITV, Channel 4 and Five), and a majority of minor channels. Older programmes filmed in 4:3 are usually transmitted in their original format, as cropping a 4:3 picture for 16:9 TVs has proved unpopular.

[edit] Obtaining height, width and area of the screen

Often, screen specifications are given by their diagonal length. Here are some formulae that can help in the finding of height, width and area, where r stands for ratio and d for diagonal length.

h=\frac{d}{\sqrt{r^2+1}} \qquad l=\frac{d}{\sqrt{\frac{1}{r^2}+1}}  \qquad A=\frac{d^2}{r+\frac{1}{r}}

[edit] Visual comparisons

Comparing two different aspect ratios is arguably difficult. Given the same diagonal, the 4:3 screen offers more area. For CRT-based technology, an aspect ratio that is closer to square is cheaper to manufacture. The same is true for projectors, and other optical devices such as cameras, camcorders, etc. For LCD and Plasma displays, however, the cost is more related to the area, so producing wider and shorter screens with the same advertised diagonal is more profitable. Making tolerable vertical viewing angle for LCD has always been challenging, which explains why LCD manufacturers were so eager to embrace shortscreen lately.

  • Two aspect ratios compared with images using the same diagonal size:
4:3 (1.33:1)
16:9 (1.78:1)
  • Two aspect ratios compared with images using the same area (number of pixels):
4:3 (1.33:1)
16:9 (1.78:1)
  • Two aspect ratios compared with images using the same height (vertical size):
4:3 (1.33:1)
16:9 (1.78:1)
  • Two aspect ratios compared with images using the same width (horizontal size):
4:3 (1.33:1)
16:9 (1.78:1)

[edit] Previous and presently used aspect ratios

See List of common resolutions for a listing of computer resolutions and aspect ratios.
See List of film formats for a full listing of film formats, including their aspect ratios.
Comparison between several film aspect ratios with the heights forced to be equal.
Aspect ratio Description
1.33:1 35 mm original silent film ratio, commonly known in TV and video as 4:3. Also standard ratio for MPEG-2 video compression. This format is still used in most personal video cameras today. It is the standard 16 mm and Super 35mm ratio.
1.37:1 35 mm full-screen sound film image, nearly universal in movies between 1932 and 1953. Officially adopted as the Academy ratio in 1932 by AMPAS. Rarely used in theatrical context nowadays, but occasionally used for other context.
1.43:1 IMAX format. Imax productions use 70 mm wide film (the same as used for 70 mm feature films), but the film runs through the camera and projector sideways. This allows for a physically larger area for each image.
1.50:1 The aspect ratio of 35 mm film used for still photography when 8 perforations are exposed. Usually called 3:2. Also the native aspect ratio of VistaVision.
1.56:1 Widescreen aspect ratio 14:9. Often used in shooting commercials etc. as a compromise format between 4:3 (12:9) and 16:9, especially when the output will be used in both standard TV and widescreen. When converted to a 16:9 frame, there is slight pillarboxing, while conversion to 4:3 creates slight letterboxing.
1.66:1 35 mm Originally a flat ratio invented by Paramount Pictures, now a standard among several European countries; native Super 16 mm frame ratio. (5:3, sometimes expressed more accurately as "1.67".)
1.75:1 Early 35 mm widescreen ratio, primarily used by MGM and Warner Bros. between 1953 and 1955, and since abandoned.
1.78:1 Video widescreen standard (16:9), used in high-definition television, one of three ratios specified for MPEG-2 video compression. Also used in some personal video cameras.
1.85:1 35 mm US and UK widescreen standard for theatrical film. Introduced by Universal Pictures in May, 1953. Projects approximately 3 perforations ("perfs") of image space per 4 perf frame; films can be shot in 3-perf to save cost of film stock.
2.00:1 Original SuperScope ratio, also used in Univisium. Used as a flat ratio for some American studios in the 1950s, abandoned in the 1960s, but recently popularized by the Red One camera system.
2.20:1 70 mm standard. Originally developed for Todd-AO in the 1950s. 2.21:1 is specified for MPEG-2 but not used.
2.35:1 35 mm anamorphic prior to 1970, used by CinemaScope ("'Scope") and early Panavision. The anamorphic standard has subtly changed so that modern anamorphic productions are actually 2.39,[1] but often referred to as 2.35 anyway, due to old convention. (Note that anamorphic refers to the compression of the image on film to maximize an area slightly taller than standard 4-perf Academy aperture, but presents the widest of aspect ratios.)
2.39:1 35 mm anamorphic from 1970 onwards. Sometimes rounded up to 2.40:1[1] Often commercially branded as Panavision format or 'Scope.
2.55:1 Original aspect ratio of CinemaScope before optical sound was added to the film in 1954. This was also the aspect ratio of CinemaScope 55.
2.59:1 Cinerama at full height (three specially captured 35 mm images projected side-by-side into one composite widescreen image).
2.66:1 Full frame output from Super 16 mm negative when an anamorphic lens system has been used. Effectively, an image that is of the ratio 2.66:1 is squashed onto the native 15:9 aspect ratio of a Super 16 mm negative.
2.76:1 MGM Camera 65 (65 mm with 1.25x anamorphic squeeze). Used only on a handful of films between 1956 and 1964, such as Ben-Hur (1959).
4.00:1 Rare use of Polyvision, three 35 mm 1.33 images projected side by side. First used on Abel Gance's Napoléon (1927).

[edit] Aspect ratio releases

[edit] Original aspect ratio (OAR)

Original Aspect Ratio (OAR) is a home cinema term for the aspect ratio or dimensions in which a film or visual production was produced — as envisioned by the people involved in the creation of the work. As an example, the film Gladiator was released to theaters in the 2.39:1 aspect ratio. It was filmed in Super 35 and, in addition to being presented in cinemas and television in the Original Aspect Ratio of 2.39:1, it was also broadcast without the matte altering the aspect ratio to the television standard of 1.33:1. Because of the varied ways in which films are shot, IAR (Intended Aspect Ratio) is a more appropriate term, but is rarely used.

[edit] Modified aspect ratio (MAR)

Modified Aspect Ratio is a home cinema term for the aspect ratio or dimensions in which a film was modified to fit a specific type of screen, as opposed to original aspect ratio. Modified aspect ratios are usually either 1.33:1 (historically), or (with the advent of widescreen television sets) 1.78:1 aspect ratio. 1.33:1 is the modified aspect ratio used historically in VHS format. A modified aspect ratio transfer is achieved by means of pan and scan or open matte, the latter meaning removing the cinematic matte from a 1.85:1 film to open up the full 1.33:1 frame.

[edit] Problems in film and television

A windowboxed image

Multiple aspect ratios create additional burdens on filmmakers and consumers, and confusion among TV broadcasters. It is common for a widescreen film to be presented in an altered format (cropped, letterboxed or expanded beyond the Original Aspect Ratio). It is also not uncommon for windowboxing to occur (when letterbox and pillarbox happen simultaneously). For instance, a 16:9 broadcast could embed a 4:3 commercial within the 16:9 image area. A viewer watching on a standard 4:3 (non-widescreen) television would see a 4:3 image of the commercial with 2 sets of black stripes, vertical and horizontal (windowboxing or the postage stamp effect). A similar scenario may also occur for a widescreen set owner when viewing 16:9 material embedded in a 4:3 frame, and then watching that in 16:9. Active Format Description is a mechanism used in digital broadcasting to avoid this problem. It is also common that a 4:3 image is stretched horizontally to fit a 16:9 screen to avoid pillar boxing.

Both PAL and NTSC have provision for some data pulses contained within the video signal used to signal the aspect ratio (See ITU-R BT.1119-1 - Widescreen signaling for broadcasting). These pulses are detected by television sets that have widescreen displays and cause the television to automatically switch to 16:9 display mode. When 4:3 material is included (such as the aforementioned commercial), the television switches to a 4:3 display mode to correctly display the material. Where a video signal is transmitted via a European SCART connection, one of the status lines is used to signal 16:9 material as well.

[edit] Still photography

Common aspect ratios in still photography include 4:3 (1.33) used by most point-and-shoot cameras and Four Thirds system cameras; 3:2 (1.5) used by 35mm film, APS-C ("classic" mode) and most DSLRs; 1.81:1 (close to 16:9) used by APS-H high definition mode and some Panasonic multi‐aspect Four Thirds and compact cameras; 3:1 used by APS‐P panoramic mode; and 1:1 (square) in a variety of cameras.

Common print sizes in the U.S. (in inches) include 4×6 (1.5), 5×7 (1.4), 4×5 and 8×10 (1.25), and 11×14 (1.27); large format cameras typically use one of these aspect ratios. Medium-format cameras typically have format designated by nominal sizes in centimeters (6×6, 6×7, 6×9, 6×4.5), but these numbers should not be interpreted as exact in computing aspect ratios.

[edit] See also

[edit] References

Cited references
  1. ^ a b c d The 2.39:1 ratio is commonly labeled 2.40:1, e.g., in the American Society of Cinematographers' American Cinematographer Manual, and is mistakenly referred to as 2.35:1 (only cinema films before the 1970 SMPTE revision used 2.35:1).
  2. ^ Panasonic Introduces 2 New Cameras, India: Tech Tree, http://www.techtree.com/India/News/Panasonic_Introduces_2_New_Cameras/551-97953-893.html 
  3. ^ Burum, Steped (2004), American Cinematographer Manual (9th ed ed.), ASC Press, ISBN 0-935578-24-2 
  4. ^ a b TECHNICAL BULLETIN: Understanding Aspect Ratios. The CinemaSource Press. 2001. http://www.cinemasource.com/articles/aspect_ratios.pdf#page=8. Retrieved 2009-10-24. 
  5. ^ I. Baker, BBC (1999-08-25). Safe areas for widescreen transmission. http://www.ebu.ch/en/technical/trev/trev_280-baker.pdf. Retrieved 2009-10-27. 
  6. ^ "ΣΚΑΪ | Αρχική σελίδα". Skai.gr. http://www.skai.gr. Retrieved 2008-11-07. 
General references

[edit] External links